Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert R and Barabási AL. Statistical mechanics of complex networks. Rev. Mod. Phys., 74: 47–97 (2002).

    Article  Google Scholar 

  • Albert R, Jeong H and Barabási AL. Diameter of the World-Wide Web. Nature, 401: 130–1 (1999).

    Article  CAS  Google Scholar 

  • Albert R, Jeong H and Barabási AL. Attack and error tolerance of complex networks. Nature, 406: 378–82 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Almaas E, Kovacs B, Vicsek T, Oltvai ZN and Barabási AL. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature, 427: 839–843 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Anderson PW. More is different. Science, 177: 393–6 (1972).

    CAS  Google Scholar 

  • Barabási AL and Albert R. Emergence of scaling in random networks. Science, 286: 509–12 (1999).

    Article  PubMed  Google Scholar 

  • Barthelemy M, Gondran B and Guichard E. Spatial structure of the Internet traffic. Physica A, 319: 633–42 (2003).

    Article  Google Scholar 

  • Bollobas B. Random Graphs. Academic Press, London (1985).

    Google Scholar 

  • Bornholdt S and Schuster HG. Handbook of graphs and networks: From the genome to the Internet. Wiley-VCH, Berlin, Germany (2003).

    Google Scholar 

  • Broder A, Kumar R, Maghoul F, Raghavan P, Rajalopagan S, Stata R, Tomkins A and Wiener J. Graph structure in the web. Comput. Netw., 33: 309–20 (2000).

    Article  Google Scholar 

  • Burge CB. Chipping away at the transcriptome. Nature Genet., 27: 232–4 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P, Hermus MC, van Asperen R, Boon K, Voute PA, Heisterkamp S, van Kampen A and Versteeg R. The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Science, 291: 1289–92 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Dandekar T, Schuster S, Snel B, Huynen M and Bork P. Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem. J., 343: 115–124 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Derrida B and Flyvbjerg H. Statistical properties of randomly broken objects and of multivalley structures in disordered-systems. J. Phys. A: Math. Gen., 20: 5273–88 (1987).

    Article  Google Scholar 

  • Dorogovtsev, S.N., Goltsev, A.V. and Mendes, J.F.F.. Pseudofractal scale-free web. Phys. Rev. E, 65: 066122 (2002).

    Article  CAS  Google Scholar 

  • Dorogovtsev SN and Mendes JFF. Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, Oxford (2003).

    Google Scholar 

  • Edwards JS, Ibarra RU and Palsson BO. In silicon predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol., 19: 125–30 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS and Palsson BO. The Escherichia coli MG1655 in silicon metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA, 97: 5528–33 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS, Ramakrishna R and Palsson BO. Characterizing the metabolic phenotype: A phenotype phase plane analysis. Biotechnol. Bioeng., 77: 27–36 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wuthrich K, Bailey JE and Sauer U. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol., 184: 152–64 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Erdos P and Renyi A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5: 17–61 (1960).

    Google Scholar 

  • Faloutsos M, Faloutsos P and Faloutsos C. On power-law relationships of the Internet topology. Comput. Commun. Rev., 29: 251–62 (1999).

    Article  Google Scholar 

  • Flajolet M, Rotondo G, Daviet L, Bergametti F, Inchauspe G, Tiollais P, Transy C and Legrain P. A genomic approach to the hepatitis C virus. Gene, 242: 369–79 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415; 141–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Gerdes SY et al. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol., 185: 5673–84 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S and Murray AW. From molecular to modular cell biology. Nature, 402: C47–52 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ho Y et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415: 180–3 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Holme P, Huss M and Jeong H. Subnetwork hierarchies of biochemical pathways. Bioinformatics. 19, p532–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ibarra RU, Edwards JS and Palsson BO. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature, 420: 186–9 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M and Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci., 98: 4569–74 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S and Sakaki Y. Towards a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci., 97: 1143–47 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Mason SP, Barabási AL and Oltvai ZN. Lethality and centrality in protein networks. Nature, 411: 41–2 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN and Barabási AL. The large-scale organization of metabolic networks. Nature, 407: 651–4 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kochen M. (ed.). The small-world. ISBN: 0893914797 Ablex Pub., Norwood, N.J. (1989).

    Google Scholar 

  • Lauffenburger D. Cell signaling pathways as control modules: Complexity for simplicity. Proc. Natl. Acad. Sci., 97: 5031–33 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lawrence S and Giles CL. Accessibility of information on the web. Nature, 400: 107–9 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Liljeros F, Edling CR, Amaral LAN, Stanley HE, Aberg Y. The web of human sexual contacts. Nature, 411: 907–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Milgram S. The small-world problem. Psychology Today, 2: 60–7 (1967).

    Google Scholar 

  • Montoya JM and Sole RV. Small-world patterns in food webs. J. Theor. Biol., 214: 405–12 (2002).

    Article  PubMed  Google Scholar 

  • Newman MEJ. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA, 98: 404–9 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Pandey A and Mann M. Proteomics to study genes and genomes. Nature, 405: 837–46 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Pastor-Satorras R and Vespignani A. Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press, Cambridge (2004).

    Google Scholar 

  • Rain J-C, Selig L, DeReuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schächter V, Chemama Y, Labigne A and Legrain P. The protein-protein interaction map of Helicobacter pylori. Nature, 409: 211–15 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Rao CV and Arkin AP. Control motifs for intracellular regulatory networks. Annu. Rev. Biomed. Eng., 3: 391 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ravasz E and Barabási A-L. Hierarchical organization in complex networks. Phys. Rev. E, 67: 026112 (2003).

    Article  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN and Barabási A-L. Hierarchical organization of modularity in metabolic networks. Science, 297: 1551–5 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Redner S. How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B, 4: 131–134 (1998).

    Article  CAS  Google Scholar 

  • Schuster S, Fell DA and Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechn., 18: 326–332 (2000).

    Article  CAS  Google Scholar 

  • Schwikowski B, Uetz P and Fields S. A network of protein-protein interactions in yeast. Nat. Biotechnol., 18: 1257–61 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Segre D, Vitkup D and Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci., 99: 15112–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Stelling J, Klamt S, Bettenbrock K, Schuster S and Gilles ED. Metabolic network structure determines key aspects of functionality and regulation. Nature, 420: 190–193 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Strogatz SH. Exploring complex networks. Nature, 410: 268–76 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Uetz P et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403: 623–27 (2000)

    Article  PubMed  CAS  Google Scholar 

  • Váquez A, Pastor-Satorras R and Vespignani A. Large-scale topological and dynamical properties of the Internet. Phys. Rev. E, 65: 066130 (2002).

    Article  Google Scholar 

  • Walhout A, Sordella R, Lu X, Hartley J, Temple G, Brasch M, Thierry-Mieg N and Vidal M. Protein interaction mapping in C. elegans using proteins involved in vulva development. Science, 287: 116–22 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Wasserman S and Faust K. Social Network Analysis. Methods and Applications. Cambridge University Press, Cambridge (1994).

    Google Scholar 

  • Watts DJ and Strogatz SH. Collective dynamics of small-world networks. Nature, 393: 440–2 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Almaas, E., Oltvai, Z.N., Barabási, AL. (2005). Metabolic Networks. In: Vaidyanathan, S., Harrigan, G.G., Goodacre, R. (eds) Metabolome Analyses: Strategies for Systems Biology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25240-1_14

Download citation

Publish with us

Policies and ethics