Porous Silicon for Micromachining

  • P. J. French
  • H. Ohji
Part of the Nanostructure Science and Technology book series (NST)

9.4. Conclusions

Porous silicon was first observed during electropolishing when the current density was too low for a given HF concentration. Interest was evoked in the early 1990s with the discovery of photoluminescence and the potential for micromachining. Since these early investigations, both macroporous and microporous silicon have been shown to be valuable tools for micromachining.


Porous Silicon Etch Rate Porous Formation Electrochemical Etching Sensor Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Esashi, H. Komatsu, T. Matsuo, M. Takahashi, T. Takioshima, K. Imabayashi and H. Ozawa, Fabrication of catheter-tip and sidewall miniature pressure sensor, IEEE Trans. Electron Devices 29, 57–63(1982).Google Scholar
  2. [2]
    C.J.M. Eijkel, J. Branebjerg, M. Elwenspoek and F.C.M. van de Pol, A new technology for micromachining of silicon dopant selective HF anodic etching for the realization of low-doped monocrystalline silicon structures, IEEE Electron Device Lett. 11, 588–589 (1990).CrossRefGoogle Scholar
  3. [3]
    W. Lang, P. Steiner, A. Richter, K. Marusczyk, G. Weimann and H. Sandmaier, Application of porous silicon as a sacrificial layer, Proceedings Transducers’ 93, June 1993, Yokohama, Japan, pp. 202–205.Google Scholar
  4. [4]
    P. Steiner and W. Lang, Micromachining applications of porous silicon, Thin Solid Films 255, 52–58 (1995).CrossRefGoogle Scholar
  5. [5]
    V. Lehmann, Porous silicon—a new material for MEMS, Proceedings MEMS’96, February 1996, San Diego, pp. 1–6.Google Scholar
  6. [6]
    F. Roozeboom, R. Elfrink, J. Verhoeven, J. van den Meerakker and F. Holthuysen, High-value MOS capacitor arrays in ultradeep trenches in silicon, Microelectron. Eng. 53, 581–584 (2000).CrossRefGoogle Scholar
  7. [7]
    H. Ohji, P.J. Trimp and P.J. French, Fabrication of free standing structures using a single step electrochemical etching in hydrofluoric acid, Sensors Actuators A: Phys. 73, 95–100 (1999).CrossRefGoogle Scholar
  8. [8]
    G.M. O’Halloran, M. Kuhl, P.J. Trimp and P.J. French, The effect of additives on the absorption properties of porous silicon, Sensors Actuators A 61, 415–662 (1997).CrossRefGoogle Scholar
  9. [9]
    M. Kuhl, G.M. O’Halloran, P.T.J. Gennissen and P.J. French, Formation of porous silicon using an ammonium fluoride based electrolyte for application as a sacrificial layer, J. Micromech. Microeng. 8,317–322 (1998).CrossRefGoogle Scholar
  10. [10]
    H. Ohji, P.J. French and K. Tsutsumi, Fabrication of mechanical structures in p-type silicon using electrochemical etching, Sensors Actuators A: Phys. 82(1–3) 254–258 (2000).CrossRefGoogle Scholar
  11. [11]
    R.L. Smith, S.-F. Chuang and S.D. Collins, Porous silicon morphologies and formation mechanism, Sensors Actuators A21-A2 825–829 (1990).CrossRefGoogle Scholar
  12. [12]
    S. Izuo, H. Ohji, K. Tsutsumi and P.J. French, Electrochemical etching for n-type silicon using a novel etchant, Proceedings Transducers’01, June 2001, Munich, Germany.Google Scholar
  13. [13]
    L.T. Canham, Silicon quantum wire array fabrication by electrochemical dissolution of wafers, Appl. Phys. Lett. 57, 1046–1048 (1990).CrossRefGoogle Scholar
  14. [14]
    H. Kaneko, P.J. French and R.F. Wolffenbuttel, Photo-and electro-luminescence from porous Si, J. Luminescence 57, 101–104 (1993).CrossRefGoogle Scholar
  15. [15]
    Z.Y. Xu, M. Gal and M. Gross, Photoluminescence studies on porous silicon, Appl. Phys. Lett. 60, 1375(1992).CrossRefGoogle Scholar
  16. [16]
    P. Steiner, F. Kozlowski and W. Lang, Light-emitting porous silicon diode with an increased electroluminescence quantum efficiency, Appl. Phys. Lett. 62, 2700–2702 (1993).CrossRefGoogle Scholar
  17. [17]
    H. Wong, Recent developments in silicon optoelectronic devices, Microelectron. Reliab. 42, 317–326 (2002).CrossRefGoogle Scholar
  18. [18]
    G.M. O’Halloran, P.M. Sarro, J. Groeneweg, P.J. Trimp and P.J. French, A bulk micromachined humidity sensor based on porous silicon, Proceedings Transducers’97, 16–19 June, Chicago, USA, 1997, pp. 563–566.Google Scholar
  19. [19]
    C. Baratto, G. Faglia, G. Sberveglieri, L. Boarino, A.M. Rossi and G. Amato, Front-side micromachined porous silicon nitrogen dioxide gas sensor, Thin Solid Films 391, 261–264 (2001).CrossRefGoogle Scholar
  20. [20]
    V. Lysenko, S. Périchon, B. Remaki and D. Barbier, Thermal isolation in microsystems with porous silicon, Sensors Actuators A 99, 13–24 (2002).CrossRefGoogle Scholar
  21. [21]
    T.E. Bell, P.T.J. Gennissen and M. Kuhl, Porous silicon as a sacrificial material, J. Micromech. Microeng. 6, 361–369 (1996).CrossRefGoogle Scholar
  22. [22]
    P.T.J. Gennissen, P.J. French, D.P.A. de Munter, T.E. Bell, H. Kaneko and P.M. Sarro, Porous silicon micromachining techniques for acceleration fabrication, Proceeding ESSDERC’95, 25–27 September 1995, Den Haag, The Netherlands, pp. 593–596.Google Scholar
  23. [23]
    P.T.J. Gennissen, H. Ohji, P.J. French, C.M.A. Ashruf, G.M. O’Halloran and P.M. Sarro, Combination of epipoly and electropolishing for fabrication of accelerometers with large substrate separation gaps, Proceedings Eurosensors’99, 13–15 September 1999, Den Haag, The Netherlands, pp. 1029–1032 (CD-ROM version).Google Scholar
  24. [24]
    H. Ohji, P.J. French, S. Izuo and K. Tsutsumi, Initial pits for electrochemical etching in hydrofluoric acid, Sensors Actuators A: Phys. 85(1–3), 390–394 (2000).CrossRefGoogle Scholar
  25. [25]
    E.K. Propst and P.A. Kohl, The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile, J. Electrochem. Soc 141, 1006–1013 (1994).Google Scholar
  26. [26]
    E.A. Ponomarev and C. Levy-Clement, Macroporous formation on p-type Si in fluoride containing organic electrolytes, Electrochem. Solid-State Lett. 1, 42–45 (1998).CrossRefGoogle Scholar
  27. [27]
    R.C. Anderson, R.S. Muller and C.W. Tobias, Porous polycrystalline silicon: a new material for MEMS, J. MEMS 3, 10–17 (1994).Google Scholar
  28. [28]
    G. Lammel and Ph. Renaud, Free-standing, mobile 3D porous silicon microstructures, Sensors Actuators A: Phys. 85(1–3), 356–360 (2000).CrossRefGoogle Scholar
  29. [29]
    W. Lang, P. Steiner, U. Schaber and A. Richter, A thin film bolometer using porous silicon technology, Sensors Actuators A 43, 185–187 (1994).CrossRefGoogle Scholar
  30. [30]
    F. Hedrich, S. Billat and W. Lang, Structuring of membrane sensors using sacrificial porous silicon, Sensors Actuators A 84, 315–323 (2000).CrossRefGoogle Scholar
  31. [31]
    Cs. Dücsö, É. Vázsonyi, M. Ádám, I. Szabó, I. Bársony, J.G.E. Gardeniers and A. Van den Berg, Porous silicon bulk micromachining for thermally isolated membrane formation, Sensors Actuators A 60, 235–239 (1997).CrossRefGoogle Scholar
  32. [32]
    V. Lysenko, S. Périchon, B. Remaki and D. Barbier, Thermal isolation in microsystems with porous silicon, Sensors Actuators A 99, 13–24 (2002).CrossRefGoogle Scholar
  33. [33]
    H. Artmann and W. Frey, Porous silicon technique for realization of surface micromachined silicon structures with large gaps, Sensors Actuators A: Phys. 74(1–3), 104–108 (1999).CrossRefGoogle Scholar
  34. [34]
    J.-H. Sim, Ju.-H. Lee, Jo-H. Lee, C.-S. Cho and J.-S. Kim, Eight-beam piezoresistive accelerometer fabricated by using a selective poroussilicon etching method, Sensors Actuators A 66, 273–278 (1998).CrossRefGoogle Scholar
  35. [35]
    H. Ohji, S. Izuo, P.J. French and K. Tsutsumi, Pillar structures with a sub-micron space fabricated by macroporous-based micromachining, Sensors Actuators A 97–98, 744–748 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • P. J. French
    • 1
  • H. Ohji
    • 2
  1. 1.Electronic Instrumentation Laboratory, Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer ScienceDelf University of TechnologyDelfThe Netherlands
  2. 2.Advanced Technology Research and Development CentreMitsubishi Electric CorporationAmagasaki, HyogoJapan

Personalised recommendations