Advertisement

The Way to Uniformity in Porous III–V Compounds via Self-Organization and Lithography Patterning

  • S. Langa
  • J. Carstensen
  • M. Christophersen
  • H. Föll
  • I. M. Tiginyanu
Part of the Nanostructure Science and Technology book series (NST)

Keywords

Porous Layer Pore Formation Versus Compound Versus Semiconductor Pore Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.P. Gomes and H.H. Goossens, Electrochemistry of III–V compound semiconductors: dissolution kinetics and etching, in Advances in Electrochemical Science and Engineering, Vol. 3, Ed. H. Gerischer and C.W. Tobias, VCH, Weinheim, 1994.Google Scholar
  2. [2]
    P.H.L. Notten, J.E.A.M. van den Meerakker and J.J. Kelly, Etching of III–V Semiconductors: An Electrochemical Approach, Elsevier, Oxford, 1991.Google Scholar
  3. [3]
    P. Schmuki, J. Fraser, C.M. Vitus, M.J. Graham and H.S. Isaacs, Initiation and formation of porous GaAs, J. Electrochem. Soc. 143(10), 3316–3322 (1996).Google Scholar
  4. [4]
    P. Schmuki, D.J. Lockwood, H.J. Labbe and J.W. Fraser, Visible photoluminescence of porous GaAs, Appl. Phys. Lett. 69, 1620–1622 (1996).CrossRefGoogle Scholar
  5. [5]
    P.C. Searson, J.M. Macaulay and F.M. Ross, Pore morphology and the mechanism of pore formation in n-type silicon, J. Appl. Phys. 72, 253–258 (1992).CrossRefGoogle Scholar
  6. [6]
    T. Takizawa, Sh. Arai, M. Nakahara, Fabrication of vertical and uniform-size porous InP structure by electrochemical anodization, Japan. J. Appl. Phys. 54(2), L643–L645 (1994).CrossRefGoogle Scholar
  7. [7]
    B.H. Erne, D. Vanmaekelbergh and J.J. Kelly, Morphology and strongly enhanced photoresponse of GaP electrodes made porous by anodic etching, J. Electrochem. Soc. 143(1), 305–314 (1996).Google Scholar
  8. [8]
    I.M. Tiginyanu, G. Irmer, J. Monecke, A. Vogt and H.L. Hartnagel, Porosity-induced modification of the phonon spectrum of n-GaAs, Semicond. Sci. Technol. 12, 491–493 (1997).CrossRefGoogle Scholar
  9. [9]
    I.M. Tiginyanu, C. Schwab, J.-J. Grob, B. Prevot, H.L. Hartnagel, A. Vogt, G. Irmer and J. Monecke, Ion implantation as a tool for controlling the morphology of porous gallium phosphide, Appl. Phys. Lett. 71(26), 3829–3831 (1997).CrossRefGoogle Scholar
  10. [10]
    S. Langa, J. Carstensen, M. Christophersen, H. Föll and I.M. Tiginyanu, Observation of crossing pores in anodically etched n-GaAs, Appl. Phys. Lett. 78(8), 1074–1076, (2001).CrossRefGoogle Scholar
  11. [11]
    F.M. Ross, G. Oskam, P.C. Searson, J.M. Macaulay and J.A. Liddle, A comparison of pore formation in Si and GaAs, Phil. Mag. A 75, 525–539 (1997).Google Scholar
  12. [12]
    S. Langa, I.M. Tiginyanu, J. Carstensen, M. Christophersen and H. Föll, Formation of porous layers with different morphologies during anodic etching of n-InP, Electrochem. Solid-State Lett. 3(11), 514–516 (2000).CrossRefGoogle Scholar
  13. [13]
    M.A. Stevens-Kalceff, I.M. Tiginyanu, S. Langa and H. Föll, Correlation between morphology and cathodoluminescence in porous GaP, Appl. Phys. 89(5), 2560–2565 (2001).CrossRefGoogle Scholar
  14. [14]
    S. Ottow, V. Lehmann and H. Föll, Development of three-dimensional microstructure processing using macroporous n-type silicon, Appl. Phys. A 63, 153–159 (1996).Google Scholar
  15. [15]
    A.I. Belogorokhov, V.A. Karavanskii, A.N. Obraztsov and V. Yu. Timoshenco, Intense photoluminescence in porous gallium phosphide, JETP Lett. 60(4), 274–279 (1994).Google Scholar
  16. [16]
    A. Anedda, A. Serpi, V.A. Karavanskii, I.M. Tiginyanu and V.M. Ichizli, Time-resolved blue and ultraviolet photoluminescence in porous GaP, Appl. Phys. Lett. 67(22), 3316–3318 (1995).CrossRefGoogle Scholar
  17. [17]
    K. Kuriyama, K. Ushiyama, K. Ohbora, Y. Miyamoto and S. Takeda, Characterization of porous GaP by photoacoustic spectroscopy: the relation between band-gap widening and visible photoluminescence, Phys. Rev. B 58(3), 1103–1105 (1998).CrossRefGoogle Scholar
  18. [18]
    F. Iranzo Marin, M.A. Hamstra and D. Vanmaekelbergh, Greatly enhanced sub-bandgap photocurrent in porous GaP photoanodes, J. Electrochem. Soc. 3, 1137–1142 (1996).Google Scholar
  19. [19]
    E. Kukino, M. Amiotti, T. Takizawa and S. Arai, Anisotropic refractive index of porous InP fabricated by anodization of (111)A surface, Japan. J. Appl. Phys. 34(1), 177–178 (1995).CrossRefGoogle Scholar
  20. [20]
    I.M. Tiginyanu, G. Irmer, J. Monecke and H.L. Hartnagel, Micro-Raman scattering study of surface-related phonon modes in porous GaP, Phys. Rev. B 55(11), 6739–6742 (1997).CrossRefGoogle Scholar
  21. [21]
    I.M. Tiginyanu, V.V. Ursaki, Y.S. Raptis, V. Stergiou, E. Anastassakis, H.L. Hartnagel, A. Vogt, B. Prevot and C. Schwab, Raman modes in porous GaP under hydrostatic pressure, Phys. Status Solidi b 211, 281–286 (1999).CrossRefGoogle Scholar
  22. [22]
    I.M. Tiginyanu, I.V. Kravetsky, G. Marowsky and H.L. Hartnagel, Efficient optical second harmonic generation in porous membranes of GaP, Phys. Status Solidi a 175(2), R5–R6 (1999).CrossRefGoogle Scholar
  23. [23]
    I.M. Tiginyanu, G. Irmer, J. Monecke, H.L. Hartnagel, A. Vogt, C. Schwab and J.-J. Grob, Porosity-induced optical phonon engineering in III–V compounds, Mater. Res. Soc. Symp. Proc. 536, 99–104 (1999).Google Scholar
  24. [24]
    S. Li and J.B. Khurgin, Feasibility of phonon-assisted electronic devices, J. Appl. Phys. 74(4), 2562–2564 (1993).CrossRefGoogle Scholar
  25. [25]
    W. Plieth and S. Witzenstein, Semiconductor micromachining: fundamental electrochemistry and physics, in Semiconductor Micromachining, Volume 1: Fundamental Electrochemistry and Physics, Vol. 1, Ed. S.A. Campbell and H.J. Lewerenz, John Wiley & Sons, 1998.Google Scholar
  26. [26]
    S. Roy Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980.Google Scholar
  27. [27]
    R.M. Osgood, A. Sanchez-Rubio, D.J. Ehrlich and V. Daneu, Localized laser etching of compound semiconductors in aqueous solution, Appl. Phys. Lett. 40, 391–393 (1982).CrossRefGoogle Scholar
  28. [28]
    D.V. Podlesnik, H.H. Gilgen, R.M. Osgood, A. Sanchez and V. Daneu, Laser Diagnostics and Photochemical Processing for Semiconductors, Ed. R.M. Osgood, S.R.J. Brueck and H.R. Schlossberg, North-Holland Press, New York, 1983.Google Scholar
  29. [29]
    H. Gerischer and I. Wallem-Mattes, Z. Phys. Chem. NF 64, 187 (1969).Google Scholar
  30. [30]
    P.A. Kohl, Photoelectrochemical etching of semiconductors, J. Res. Dev. 42(5), 629–638 (1998).Google Scholar
  31. [31]
    H. Föll, M. Christophersen, J. Carstensen and G. Hasse, Formation and application of porous silicon, Mater. Sci. Eng. R 39(4), 93 (2002).CrossRefGoogle Scholar
  32. [32]
    C. Levy-Clement, A. Lajousi and M. Tomkievicz, Morphology of porous n-type silicon obtained by electrochemical etching, J. Electrochem. Soc. 141, 958–967 (1994).Google Scholar
  33. [33]
    M.M. Carrabba, N.M. Nguyen and R.D. Rauh, Effects on doping and orientation on photoelectrochemically etched features in n-GaAs, J. Electrochem. Soc. 134(7), 1855–1859 (1987).Google Scholar
  34. [34]
    H. Föll, Properties of silicon-electrolyte junctions and their application to silicon characterization, Appl. Phys. A 53, 8–18 (1991).CrossRefGoogle Scholar
  35. [35]
    H. Gerischer, P. Allongue and V. Costa Kieling, The mechanism of the anodic oxidation of silicon in acidic fluoride solutions revisited, Ber. Bunsenges. Phys. Chem. 97, 753–757 (1993).Google Scholar
  36. [36]
    P. Schmuki, L.E. Erikson, D.J. Lockwood, B.F. Mason, J.W. Fraser, G. Champion and H.J. Labbe, Predefined initiation of porous GaAs using focused ion beam surface sensitization, J. Electrochem. Soc. 146, 735–740 (1999).CrossRefGoogle Scholar
  37. [37]
    G. Oskam, A. Natarajan, P.C. Searson, F.M. Ross, J.M. Macaulay and J.A. Liddle, State of the Art Program on Compound Semiconductors XXI, Electrochemical Society, Pennington, New Jersey, 1995.Google Scholar
  38. [38]
    T. Takebe, T. Yamamoto, M. Fujii and K. Kobayashi, Fundamental selective etching characteristics of HF + H2O2 + H2O mixtures for GaAs, J. Electrochem. Soc. 140(4), 1169–1180 (1993).Google Scholar
  39. [39]
    D. Tromans, G.G. Liu, F. Weinberg, The pitting corrosion of p-Type GaAs single crystals, Corrosion Sci. 35, 117–125 (1993).CrossRefGoogle Scholar
  40. [40]
    J.C. Tranchart, L. Hollan and R. Memming, J. Electrochem. Soc. 125(7), 1185 (1978).Google Scholar
  41. [41]
    E. Yablonovitch, T.J. Gmitter and K.M. Leung, Photonic band structure: the face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett. 67(17), 2295–2298 (1991).CrossRefGoogle Scholar
  42. [42]
    P. Schmuki, L.E. Erickson, D.J. Lockwood, J.W. Fraser, G. Champion and H.J. Labbe, Formation of visible light emitting porous GaAs micropatterns, Appl. Phys. Lett. 72, 1039–1041 (1998).CrossRefGoogle Scholar
  43. [43]
    M.N. Ruberto, X. Zhang, R. Scarmozzino, A.E. Willner, D.V. Podlesnik and R.M. Osgood, The laser-controlled micrometer-scale photoelectrochemical etching of III–V semiconductors, J. Electrochem. Soc. 138, 1174–1187 (1991).Google Scholar
  44. [44]
    X.G. Zhang, Mechanism of pore formation on n silicon, J. Electrochem. Soc. 138, 3750–3756 (1991).Google Scholar
  45. [45]
    H. Gerischer, P. Allongue and V. Costa Kieling, The mechanism of the anodic oxidation of silicon in acidic fluoride solutions revisited, Ber. Bunsenges. Phys. Chem. 97, 753–757 (1993).Google Scholar
  46. [46]
    J. Carstensen, M. Christophersen and H. Föll, Pore formation mechanisms for the Si-HF system, Mater. Sci. Eng. B 69–70, 23–28 (2000).CrossRefGoogle Scholar
  47. [47]
    G.S. Popkirov and R.N. Schindler, New approach to the problem of “good” and “bad” impedance data in electrochemical impedance spectroscopy, Electrochim. Acta 39, 2025–2030 (1994).CrossRefGoogle Scholar
  48. [48]
    C. Jäger, B. Finkenberger, W. Jäger, M. Christophersen, J. Carstensen and H. Föll, Transmission electron microscopy investigation of the formation of macropores in n-and p-Si(001)/(111), Mater. Sci. Eng. B 69–70, 199–204 (2000).CrossRefGoogle Scholar
  49. [49]
    Z.H. Lu, F. Chatenoud, M.M. Dion, M.J. Graham, H.E. Ruda, I. Koutzarov, Q. Liu, C.E.J. Mitchell, I.G. Hil and A.B. McLean, Passivation of GaAs(111)A surface by Cl termination, Appl. Phys. Lett. 67, 670–672 (1995).CrossRefGoogle Scholar
  50. [50]
    F. Müller, A. Birner, J. Schilling, U. Gösele, Ch. Kettner and P. Hänggi, Membranes for micropumps from macroporous silicon, Phys. Status Solidi a 182, 585–590 (2000).CrossRefGoogle Scholar
  51. [51]
    J. Carstensen, R. Prange, G.S. Popkirov and H. Föll, A model of current oscillations at the Si-HF-system based on a quantitative analysis of current transients, Appl. Phys. A 67-4, 459–467 (1998).CrossRefGoogle Scholar
  52. [52]
    J. Carstensen, R. Prange and H. Föll, Percolation model for the current oscillation in the Si-HF system, Proc. ECS’ 193rd Meeting, San Diego, Vol. 98–10, 1998, pp. 148–157.Google Scholar
  53. [53]
    M. Christophersen, J. Carstensen, A. Feuerhake and H. Föll, Crystal orientation and electrolyte dependence for macropore nucleation and stable growth on p-type Si, Mater. Sci. Eng. B 69–70, 194–198 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. Langa
    • 1
    • 2
  • J. Carstensen
    • 1
  • M. Christophersen
    • 1
  • H. Föll
    • 1
  • I. M. Tiginyanu
    • 2
  1. 1.Materials Science Department, Faculty of EngineeringChristian-Albrechts-UniversityKielGermany
  2. 2.Laboratory of Low Dimensional Semiconductor StructuresTechnical University of MoldovaChisinau, Moldova

Personalised recommendations