Advertisement

Macropores in p-Type Silicon

  • J. -N. Chazalviel
  • F. Ozanam
Part of the Nanostructure Science and Technology book series (NST)

2.6. Conclusion

Though macropore growth on p-Si has appeared years after the corresponding studies started on n-Si, it seems to have reached a fair level of control and understanding. In general, crystallographic effects appear somewhat less marked for p-Si than for n-Si. However, strongly anisotropic pore growth may be obtained in suitable non-aqueous solvents. Although macropores, in p-Si as well as in n-Si, do not exhibit spontaneous long-range ordering, they can be grown as long-range ordered arrays if the growth is initiated by prepatterning. Especially, the possibility to grow structures down to lower and lower resistivities may lead one to obtain smaller structures from p-Si than from n-Si. This opens the way to a variety of applications, from the manufacturing of micromechanical devices to the engineering of photonic-crystal materials.

Keywords

Porous Silicon Linear Stability Analysis Propylene Carbonate Average Wall Thickness Silicon Resistivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.L. Smith and S.D. Collins, J. Appl. Phys. 71, R1–R22 (1992).CrossRefGoogle Scholar
  2. [2]
    L.T. Canham (Ed.), Properties of Porous Silicon, EMIS Datareviews Series, INSPEC, IEE, London, 1997.Google Scholar
  3. [3]
    J.-N. Chazalviel, R.B. Wehrspohn, F. Ozanam and I. Solomon, MRS Symp. Proc. 452, 403–414 (1997).Google Scholar
  4. [4]
    R.B. Wehrspohn, F. Ozanam and J.-N. Chazalviel, J. Electrochem. Soc. 145, 2958–2961 (1998).Google Scholar
  5. [5]
    V. Lehmann and S. Rönnebeck, J. Electrochem. Soc. 146, 2968–2975 (1999).CrossRefGoogle Scholar
  6. [6]
    E.K. Propst and P.A. Kohl, J. Electrochem. Soc. 141, 1006–1013 (1994).Google Scholar
  7. [7]
    M.M. Rieger and P.A. Kohl, J. Electrochem. Soc. 142, 1490–1495 (1995).Google Scholar
  8. [8]
    E.A. Ponomarev and C. Levy-Clément, Electrochemical Solid-State Lett. 1, 42–45 (1998).CrossRefGoogle Scholar
  9. [9]
    E.A. Ponomarev and C. Levy-Clément, J. Porous Mater. 7, 51–56 (2000).CrossRefGoogle Scholar
  10. [10]
    S. Lust and C. Levy-Clément, Phys. Status Solidi a 182, 17–21 (2000).CrossRefGoogle Scholar
  11. [11]
    M. Christophersen, J. Carstensen, A. Feuerhake and H. Föll, Mater. Sci. Eng. B 69–70, 194–198 (2000).CrossRefGoogle Scholar
  12. [12]
    C. Jäger, B. Finkenberger, W. Jäger, M. Christophersen, J. Carstensen and H. Föll, Mater. Sci. Eng. B 69–70, 199–204 (2000).CrossRefGoogle Scholar
  13. [13]
    M. Christophersen, J. Carstensen and H. Föll, Phys. Status Solidi a 182, 103–107 (2000).CrossRefGoogle Scholar
  14. [14]
    M. Christophersen, J. Carstensen, S. Rönnebeck, C. Jäger and H. Föll, J. Electrochem. Soc. 148, E267–E275 (2001).CrossRefGoogle Scholar
  15. [15]
    A. Belaïdi, M. Safi, F. Ozanam, J.-N. Chazalviel and O. Gorochov, J. Electrochem. Soc. 146, 2659–2664 (1999).CrossRefGoogle Scholar
  16. [16]
    J.-N. Chazalviel, M. Etman and F. Ozanam, J. Electroanal. Chem. 297, 533–540 (1991).CrossRefGoogle Scholar
  17. [17]
    M. Etman, M. Neumann-Spallart, F. Ozanam and J.-N. Chazalviel, J. Electroanal. Chem. 301, 259–265 (1991).CrossRefGoogle Scholar
  18. [18]
    V. Lehmann, J. Electrochem. Soc. 140, 2836–2843 (1993).Google Scholar
  19. [19]
    H.H. Hassan, J.L. Sculfort, M. Etman, F. Ozanam and J.-N. Chazalviel, J. Electroanal. Chem. 380, 55–61 (1995).CrossRefGoogle Scholar
  20. [20]
    S. Cattarin, I. Frateur, M. Musiani and B. Tribollet, J. Electrochem. Soc. 147, 3277–3282 (2000).CrossRefGoogle Scholar
  21. [21]
    J.E.A.M. Van den Meerakker and M.R.L. Mellier, J. Electrochem. Soc. 148, G166–G171 (2001).CrossRefGoogle Scholar
  22. [22]
    H. Harada, T. Shirahashi, M. Nakamura, T. Ohwada, Y. Sasaki, S. Okuda and A. Hosono, Jpn. J. Appl. Phys. 40, 4862–4863 (2001).CrossRefGoogle Scholar
  23. [23]
    J.-N. Chazalviel, F. Ozanam, N. Gabouze, S. Fellah and R.B. Wehrspohn, J. Electrochem. Soc. 149, C511–C520 (2002).CrossRefGoogle Scholar
  24. [24]
    V. Lehmann and H. Föll, J. Electrochem. Soc. 137, 653–659 (1990).Google Scholar
  25. [25]
    J. Carstensen, M. Christophersen and H. Föll, Mater. Sci. Eng. B 69–70, 23–28 (2000).CrossRefGoogle Scholar
  26. [26]
    W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444–451 (1964).CrossRefGoogle Scholar
  27. [27]
    Y. Kang and J. Jorné, J. Electrochem. Soc. 140, 2258–2265 (1993).Google Scholar
  28. [28]
    A. Valance, Phys. Rev. B 52, 8323–8336 (1995).CrossRefGoogle Scholar
  29. [29]
    A. Valance, Phys. Rev. B 55, 9706–9715 (1997).CrossRefGoogle Scholar
  30. [30]
    R.B. Wehrspohn, F. Ozanam and J.-N. Chazalviel, J. Electrochem. Soc. 146, 3309–3314 (1999).CrossRefGoogle Scholar
  31. [31]
    J.-N. Chazalviel, R.B. Wehrspohn and F. Ozanam, Mater. Sci. Eng. B 69–70, 1–10 (2000).CrossRefGoogle Scholar
  32. [32]
    I. Ronga, A. Bsiesy, F. Gaspard, R. Hérino, M. Ligeon, F. Muller and A. Halimaoui, J. Electrochem. Soc. 138, 1403–1407 (1991).Google Scholar
  33. [33]
    M. Christophersen, J. Carstensen and H. Föll, Phys. Status Solidi a 182, 45–50 (2000).CrossRefGoogle Scholar
  34. [34]
    V. Lehmann and U. Gösele, Appl. Phys. Lett. 58, 856–858 (1991).CrossRefGoogle Scholar
  35. [35]
    R. Memming and G. Schwandt, Surf. Sci. 4, 109–124 (1966).CrossRefGoogle Scholar
  36. [36]
    E. Peiner and A. Schlachetzki, J. Electrochem. Soc. 139, 552–557 (1992).Google Scholar
  37. [37]
    K.J. Chao, S.C. Kao, C.M. Yang, M.S. Hseu and T.G. Tsai, Electrochem. Solid-State Lett. 3, 489–492 (2000).CrossRefGoogle Scholar
  38. [38]
    A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle and U. König, J. Electrochem. Soc. 149, G70–G76 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • J. -N. Chazalviel
    • 1
  • F. Ozanam
    • 1
  1. 1.Laboratoire de Physique de la Matière CondenséeCNRS-Ecole PolytechniquePalaiseauFrance

Personalised recommendations