Skip to main content

Space-Charge Driven Holograms in Anisotropic Media

  • Chapter
Photorefractive Materials and Their Applications 1

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 113))

  • 1207 Accesses

4.6 Conclusions

In this chapter, we summarized the effects of the various anisotropic material properties on light diffraction, space-charge field formation, and photorefractive two-wave mixing interactions. These properties include the birefringence, the dielectric constants, the dichroism, the electro-optic constants, the elastic and photoelastic constants, the piezoelectric constants, the mobility tensor, and the cross-sections for free carrier photoexcitation. All these material properties have a substantial influence on the observable quantities. In particular, the role played in photorefractive materials by an anisotropy of the photoexcitation process with respect to light polarization, often over-looked, was discussed in detail here. Also, light diffraction in anisotropic media was treated in deeper detail. While the coupled wave model presented in Section 4.3 does apply to photorefractive volume gratings, it is equally important for any holographic materials having strong birefringence and/or containing volume gratings with strongly anisotropic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kogelnik: Bell Syst. Tech. J. 48, 2909 (1969).

    Google Scholar 

  2. R.S. Cudney, R.M. Pierce, G.D. Bacher, and J. Feinberg: J. Opt. Soc. Am. B 8, 1326 (1991).

    Article  ADS  Google Scholar 

  3. B.I. Sturman, S.G. Odoulov, and M. Yu. Goulkov: Phys. Rep. 275, 197 (1996)

    Article  ADS  Google Scholar 

  4. G. Montemezzani, C. Medrano, P. Günter, and M. Zgonik: Phys. Rev. Lett. 79, 3403 (1997).

    Article  ADS  Google Scholar 

  5. V.M. Agranovich and V.L. Ginzburg, in Crystal optics with spatial dispersion, and excitons, Springer Series in Solid-State Sciences 42, 2 edn., edited by H. J. Queisser, Springer, Berlin (1984).

    Google Scholar 

  6. G. Montemezzani and M. Zgonik: Phys. Rev. E 35, 1035 (1997).

    Article  ADS  Google Scholar 

  7. A.A. Izvanov, A.E. Mandel, N.D. Khatkov, and S.M. Shandarov: Optoel. Data Proc. Instr. 2, 80 (1986).

    Google Scholar 

  8. S.I. Stepanov, S.M. Shandarov, and N.D. Khatkov: Sov. Phys. Solid State 29, 1754 (1987).

    Google Scholar 

  9. P. Günter and M. Zgonik: Opt. Lett. 16, 1826 (1991).

    Article  ADS  Google Scholar 

  10. G. Pauliat, M. Mathey, and G. Roosen: J. Opt. Soc. Am. B 8, 1942 (1991).

    Article  ADS  Google Scholar 

  11. J.F. Nye, Physical properties of crystals, Clarendon Press, Oxford (1985).

    Google Scholar 

  12. D.F. Nelson and M. Lax: Phys. Rev. Lett. 24, 1187 (1970).

    Article  ADS  Google Scholar 

  13. M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter: J. Appl. Phys. 74, 1287 (1993).

    Article  ADS  Google Scholar 

  14. C.P. Tzou, T.Y. Chang, and R.W. Hellwarth: Proc. SPIE 613, 58 (1986).

    Google Scholar 

  15. D. Mahgerefteh, D. Kirillov, R.S. Cudney, G.D. Bacher, R.M. Pierce, and J. Feinberg: Phys. Rev. B 53, 7094 (1996).

    Article  ADS  Google Scholar 

  16. P. Bernasconi, I. Biaggio, M. Zgonik, and P. Günter: Phys. Rev. Lett. 78, 106 (1997).

    Article  ADS  Google Scholar 

  17. S. Follonier, C. Bosshard, F. Pan, and P. Günter: Opt. Lett. 21, 1655 (1996).

    Article  ADS  Google Scholar 

  18. E.V. Rudenko and A.V. Sukhov: JETP 78, 875 (1994).

    ADS  Google Scholar 

  19. I.C. Khoo, M.Y. Shih, M.V. Wood, B.D. Guenther, P.H. Chen, F. Simoni, S.S. Slussarenko, O. Francescangeli, and L. Lucchetti: Proc. IEEE 87, 1897 (1999).

    Article  Google Scholar 

  20. A. Golemme, B. Kippelen, and N. Peyghambarian: Chem. Phys. Lett. 319, 655 (2000).

    Article  ADS  Google Scholar 

  21. J.J. Butler and M.S. Malcuit: Opt. Lett. 25, 420 (2000).

    Article  ADS  Google Scholar 

  22. M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A.K. Fontecchio and G.P. Crawford: J. Appl. Phys. 90, 3831 (2001).

    Article  ADS  Google Scholar 

  23. T.K. Gaylord and M.G. Moharam: Appl. Opt. 20, 3271 (1981).

    Article  ADS  Google Scholar 

  24. M. Born and E. Wolf, Principles of optics, 6 edn., Pergamon Press, Oxford (1980).

    Google Scholar 

  25. G.N. Ramachandran and S. Ramaseshan, in Handbuch der Physik, edited by S. Flügge Vol. 25/1, pp. 85–96. Springer, Berlin (1961).

    Google Scholar 

  26. E. Guibelalde: Opt. Quantum Electr. 16, 173 (1984).

    Article  Google Scholar 

  27. R. Birabassov, A. Yesayan, and T.V. Galtsyan: Opt. Lett. 24, 1669 (1999).

    Article  ADS  Google Scholar 

  28. S.R. Marder, J.W. Perry, and C.P. Yakymyshyn: Chem. Mater. 6, 1137 (1994).

    Article  Google Scholar 

  29. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M.S. Wong, and P. Günter: Appl. Phys. Lett. 69, 13 (1996).

    Article  ADS  Google Scholar 

  30. N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, and V.L. Vinetskii: Ferroelectrics 22, 949 (1979).

    Google Scholar 

  31. A.M. Glass, D. VonderLinde, and T.J. Negran: Appl. Phys. Lett. 25, 233 (1974).

    Article  ADS  Google Scholar 

  32. G. Montemezzani: Phys. Rev. A 62, 053803 (2000).

    Article  ADS  Google Scholar 

  33. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M.H. Garrett, D. Rytz, Y. Zhu, and X. Wu: Phys. Rev. B 50, 5941 (1994).

    Article  ADS  Google Scholar 

  34. P. Yeh, Introduction to photorefractive nonlinear optics, Wiley series in pure and applied optics, Wiley, New York (1993).

    Google Scholar 

  35. N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, and V.L. Vinetskii: Ferroelectrics 22, 961 (1979).

    Google Scholar 

  36. P. Yeh: Opt. Commun. 45, 323 (1983).

    Article  ADS  Google Scholar 

  37. G. Montemezzani, A.A. Zozulya, L. Czaia, D.Z. Anderson, M. Zgonik, and P. Günter: Phys. Rev. A 52, 1791 (1995).

    Article  ADS  Google Scholar 

  38. C. Medrano, M. Zgonik, I. Liakatas, and P. Günter: J. Opt. Soc. Am. B 13, 2657 (1996).

    Article  ADS  Google Scholar 

  39. G.C. Valley: J. Appl. Phys. 59, 3363 (1986).

    Article  ADS  Google Scholar 

  40. F.P. Strohkendl, J.M.C. Jonathan, and R.W. Hellwarth: Opt. Lett. 11, 312 (1986).

    Article  ADS  Google Scholar 

  41. U. van Stevendaal, K. Buse, H. Malz, H. Veenhuis, and E. Kratzig: J. Opt. Soc. Am. B 15, 2868 (1998).

    Article  ADS  Google Scholar 

  42. K.R. MacDonald, J. Feinberg, M.Z. Zha, and P. Günter: Opt. Commun. 50, 146 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Montemezzani, G., Zgonik, M. (2006). Space-Charge Driven Holograms in Anisotropic Media. In: Günter, P., Huignard, JP. (eds) Photorefractive Materials and Their Applications 1. Springer Series in Optical Sciences, vol 113. Springer, New York, NY. https://doi.org/10.1007/0-387-25192-8_4

Download citation

Publish with us

Policies and ethics