Regulation of ectodomain shedding
  • Joaquín Arribas
  • Soraya Ruiz-Paz
Part of the Proteases in Biology and Disease book series (PBAD, volume 4)


The participation of ADAM 17 in the proteolytic release of the ectodomain of different cell surface proteins, a process known as shedding, has been well established. The characterization of ADAM 17 knockout cell lines has unveiled an unexpectedly wide repertoire of substrates. However, despite the likely involvement of ADAM 17 in the development of several diseases, critical questions such as how its metalloprotease activity is regulated or how its substrates are recognized remain to be answered.

Key words

ADAM 17/TACE shedding ADAM family EGFR transactivation cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akatsu, T., Nakamura, M., Satoh, M. Hiramori, K., 2003, Increased mRNA expression of tumour necrosis factor-alpha and its converting enzyme in circulating leucocytes of patients with acute myocardial infarction. Clin Sci (Lond). 105:(1): 39–44.CrossRefGoogle Scholar
  2. Althoff, K., Reddy, P., Voltz, N., Rose-John, S. Mullberg, J., 2000, Shedding of interleukin-6 receptor and tumor necrosis factor alpha. Contribution of the stalk sequence to the cleavage pattern of transmembrane proteins. Eur J Biochem. 267:(9): 2624–31.PubMedCrossRefGoogle Scholar
  3. Althoff, K., Mullberg, J., Aasland, D., Voltz, N., Kallen, K., Grotzinger, J. Rose-John, S., 2001, Recognition sequences and structural elements contribute to shedding susceptibility of membrane proteins. Biochem J. 353: (Pt 3): 663–72.PubMedCrossRefGoogle Scholar
  4. Amin, A. R., 1999, Regulation of tumor necrosis factor-alpha and tumor necrosis factor converting enzyme in human osteoarthritis. Osteoarthritis Cartilage. 7:(4): 392–4.PubMedCrossRefGoogle Scholar
  5. Argast, G. M., Campbell, J. S., Brooling, J. T. Fausto, N., 2004, Epidermal growth factor receptor transactivation mediates tumor necrosis factor-induced hepatocyte replication. J Biol Chem. 279:(33): 34530–6PubMedCrossRefGoogle Scholar
  6. Arribas, J. and Massague, J., 1995, Transforming growth factor-alpha and beta-amyloid precursor protein share a secretory mechanism. J Cell Biol. 128:(3): 433–41.PubMedCrossRefGoogle Scholar
  7. Arribas, J., Coodly, L., Vollmer, P., Kishimoto, T. K., Rose-John, S. Massague, J., 1996, Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J Biol Chem. 271:(19): 11376–82.PubMedCrossRefGoogle Scholar
  8. Arribas, J., Lopez-Casillas, F. Massague, J., 1997, Role of the juxtamembrane domains of the transforming growth factor-alpha precursor and the beta-amyloid precursor protein in regulated ectodomain shedding. J Biol Chem. 272:(27): 17160–5.PubMedCrossRefGoogle Scholar
  9. Arribas, J. and Borroto, A., 2002, Protein ectodomain shedding. Chem Rev. 102:(12): 4627–38.PubMedCrossRefGoogle Scholar
  10. Arribas, J. and Merlos-Suarez, A., 2003, Shedding of plasma membrane proteins. Curr Top Dev Biol. 54: 125–44.PubMedGoogle Scholar
  11. Bax, D. V., Messent, A. J., Tart, J., Van Hoang, M., Kott, J., Maciewicz, R. A. Humphries, M. J., 2004, Integrin alpha 5beta 1 and TNFalpha converting enzyme (TACE/ADAM-17) interact in vitro and colocalise in migrating HeLa cells. J Biol Chem. 279:(21): 22377–86PubMedCrossRefGoogle Scholar
  12. Biggs, J. R., Kudlow, J. E. Kraft, A. S., 1996, The role of the transcription factor Sp1 in regulating the expression of the WAF1/CIP1 gene in U937 leukemic cells. J Biol Chem. 271:(2): 901–6.PubMedCrossRefGoogle Scholar
  13. Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. Cerretti, D. P., 1997, A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 385:(6618): 729–33.PubMedCrossRefGoogle Scholar
  14. Blobel, C. P., 2000, Remarkable roles of proteolysis on and beyond the cell surface. Curr Opin Cell Biol. 12:(5): 606–12.PubMedCrossRefGoogle Scholar
  15. Borrell-Pages, M., Fernandez-Larrea, J., Borroto, A., Rojo, F., Baselga, J. Arribas, J., 2000, The carboxy-terminal cysteine of the tetraspanin L6 antigen is required for its interaction with SITAC, a novel PDZ protein. Mol Biol Cell. 11:(12): 4217–25.PubMedGoogle Scholar
  16. Borrell-Pages, M., Rojo, F., Albanell, J., Baselga, J. Arribas, J., 2003, TACE is required for the activation of the EGFR by TGF-alpha in tumors. Embo J. 22:(5): 1114–24.PubMedCrossRefGoogle Scholar
  17. Borroto, A., Ruiz-Paz, S., de la Torre, T. V., Borrell-Pages, M., Merlos-Suarez, A., Pandiella, A., Blobel, C. P., Baselga, J. Arribas, J., 2003, Impaired trafficking and activation of tumor necrosis factor-alpha-converting enzyme in cell mutants defective in protein ectodomain shedding. J Biol Chem. 278:(28): 25933–9.PubMedCrossRefGoogle Scholar
  18. Bosenberg, M. W., Pandiella, A. Massague, J., 1992, The cytoplasmic carboxy-terminal amino acid specifies cleavage of membrane TGF alpha into soluble growth factor. Cell. 71:(7): 1157–65.PubMedCrossRefGoogle Scholar
  19. Brakebusch, C., Varfolomeev, E. E., Batkin, M. Wallach, D., 1994, Structural requirements for inducible shedding of the p55 tumor necrosis factor receptor. J Biol Chem. 269:(51): 32488–96.PubMedGoogle Scholar
  20. Budagian, V., Bulanova, E., Orinska, Z., Ludwig, A., Rose-John, S., Saftig, P., Borden, E. C. Bulfone-Paus, S., 2004, Natural soluble IL-15Ralpha is generated by cleavage that involves the tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17). J Biol Chem. 279:(39): 40368–75PubMedCrossRefGoogle Scholar
  21. Buxbaum, J. D., Gandy, S. E., Cicchetti, P., Ehrlich, M. E., Czernik, A. J., Fracasso, R. P., Ramabhadran, T. V., Unterbeck, A. J. Greengard, P., 1990, Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc Natl Acad Sci U S A. 87:(15): 6003–6.PubMedCrossRefGoogle Scholar
  22. Buxbaum, J. D., Oishi, M., Chen, H. I., Pinkas-Kramarski, R., Jaffe, E. A., Gandy, S. E. Greengard, P., 1992, Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci U S A. 89:(21): 10075–8.PubMedCrossRefGoogle Scholar
  23. Buxbaum, J. D., Liu, K. N., Luo, Y., Slack, J. L., Stocking, K. L., Peschon, J. J., Johnson, R. S., Castner, B. J., Cerretti, D. P. Black, R. A., 1998, Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem. 273:(43): 27765–7.PubMedCrossRefGoogle Scholar
  24. Bzowska, M., Jura, N., Lassak, A., Black, R. A. Bereta, J., 2004, Tumour necrosis factor-alpha stimulates expression of TNF-alpha converting enzyme in endothelial cells. Eur J Biochem. 271:(13): 2808–20.PubMedCrossRefGoogle Scholar
  25. Contin, C., Pitard, V., Itai, T., Nagata, S., Moreau, J. F. Dechanet-Merville, J., 2003, Membrane-anchored CD40 is processed by the tumor necrosis factor-alpha-converting enzyme. Implications for CD40 signaling. J Biol Chem. 278:(35): 32801–9.PubMedCrossRefGoogle Scholar
  26. Daub, H., Weiss, F. U., Wallasch, C. Ullrich, A., 1996, Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 379:(6565): 557–60.PubMedCrossRefGoogle Scholar
  27. Daub, H., Wallasch, C., Lankenau, A., Herrlich, A. Ullrich, A., 1997, Signal characteristics of G protein-transactivated EGF receptor. Embo J. 16:(23): 7032–44.PubMedCrossRefGoogle Scholar
  28. Diaz-Rodriguez, E., Montero, J. C., Esparis-Ogando, A., Yuste, L. Pandiella, A., 2002, Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol Biol Cell. 13:(6): 2031–44.PubMedCrossRefGoogle Scholar
  29. Doedens, J. R. and Black, R. A., 2000, Stimulation-induced down-regulation of tumor necrosis factor-alpha converting enzyme. J Biol Chem. 275:(19): 14598–607.PubMedCrossRefGoogle Scholar
  30. Doedens, J. R., Mahimkar, R. M. Black, R. A., 2003, TACE/ADAM-17 enzymatic activity is increased in response to cellular stimulation. Biochem Biophys Res Commun. 308:(2): 331–8.PubMedCrossRefGoogle Scholar
  31. Dolnik, O., Volchkova, V., Garten, W., Carbonnelle, C., Becker, S., Kahnt, J., Stroher, U., Klenk, H. D. Volchkov, V., 2004, Ectodomain shedding of the glycoprotein GP of Ebola virus. Embo J. 23:(10): 2175–84PubMedCrossRefGoogle Scholar
  32. Duffy, M. J., Lynn, D. J., Lloyd, A. T. O’Shea, C. M., 2003, The ADAMs family of proteins: from basic studies to potential clinical applications. Thromb Haemost. 89:(4): 622–31.PubMedGoogle Scholar
  33. Endres, K., Anders, A., Kojro, E., Gilbert, S., Fahrenholz, F. Postina, R., 2003, Tumor necrosis factor-alpha converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Eur J Biochem. 270:(11): 2386–93.PubMedCrossRefGoogle Scholar
  34. Fan, H. and Derynck, R., 1999, Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. Embo J. 18:(24): 6962–72.PubMedCrossRefGoogle Scholar
  35. Fan, H., Turck, C. W. Derynck, R., 2003, Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. J Biol Chem. 278:(20): 18617–27.PubMedCrossRefGoogle Scholar
  36. Fischer, O. M., Hart, S., Gschwind, A., Prenzel, N. Ullrich, A., 2004, Oxidative and osmotic stress signaling in tumor cells is mediated by ADAM proteases and heparin-binding epidermal growth factor. Mol Cell Biol. 24:(12): 5172–83.PubMedCrossRefGoogle Scholar
  37. Fourie, A. M., Coles, F., Moreno, V. Karlsson, L., 2003, Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J Biol Chem. 278:(33): 30469–77.PubMedCrossRefGoogle Scholar
  38. Franzke, C. W., Tasanen, K., Schacke, H., Zhou, Z., Tryggvason, K., Mauch, C., Zigrino, P., Sunnarborg, S., Lee, D. C., Fahrenholz, F. Bruckner-Tuderman, L., 2002, Transmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMs. Embo J. 21:(19): 5026–35.PubMedCrossRefGoogle Scholar
  39. Garton, K. J., Gough, P. J., Blobel, C. P., Murphy, G., Greaves, D. R., Dempsey, P. J. Raines, E. W., 2001, Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem. 276:(41): 37993–8001.PubMedGoogle Scholar
  40. Garton, K. J., Gough, P. J., Philalay, J., Wille, P. T., Blobel, C. P., Whitehead, R. H., Dempsey, P. J. Raines, E. W., 2003, Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-alpha-converting enzyme (ADAM 17). J Biol Chem. 278:(39): 37459–64.PubMedCrossRefGoogle Scholar
  41. Gechtman, Z., Alonso, J. L., Raab, G., Ingber, D. E. Klagsbrun, M., 1999, The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the Raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. J Biol Chem. 274:(40): 28828–35.PubMedCrossRefGoogle Scholar
  42. Gonzales, P. E., Solomon, A., Miller, A. B., Leesnitzer, M. A., Sagi, I. Milla, M. E., 2004, Inhibition of the TNFalpha converting enzyme (TACE) by its Pro domain. J Biol Chem.Google Scholar
  43. Gschwind, A., Hart, S., Fischer, O. M. Ullrich, A., 2003, TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. Embo J. 22:(10): 2411–21.PubMedCrossRefGoogle Scholar
  44. Guo, L., Eisenman, J. R., Mahimkar, R. M., Peschon, J. J., Paxton, R. J., Black, R. A. Johnson, R. S., 2002, A proteomic approach for the identification of cell-surface proteins shed by metalloproteases. Mol Cell Proteomics. 1:(1): 30–6.PubMedCrossRefGoogle Scholar
  45. Hansen, H. P., Dietrich, S., Kisseleva, T., Mokros, T., Mentlein, R., Lange, H. H., Murphy, G. Lemke, H., 2000, CD30 shedding from Karpas 299 lymphoma cells is mediated by TNF-alpha-converting enzyme. J Immunol. 165:(12): 6703–9.PubMedGoogle Scholar
  46. Hansen, H. P., Recke, A., Reineke, U., Von Tresckow, B., Borchmann, P., Von Strandmann, E. P., Lange, H., Lemke, H. Engert, A., 2004, The ectodomain shedding of CD30 is specifically regulated by peptide motifs in its cysteine-rich domains 2 and 5. Faseb J. 18:(7): 893–5.PubMedGoogle Scholar
  47. Hart, S., Fischer, O. M. Ullrich, A., 2004, Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res. 64:(6): 1943–50.PubMedCrossRefGoogle Scholar
  48. Hartmann, D., de Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena Illert, A., von Figura, K. Saftig, P., 2002, The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet. 11:(21): 2615–24.PubMedCrossRefGoogle Scholar
  49. Hinkle, C. L., Sunnarborg, S. W., Loiselle, D., Parker, C. E., Stevenson, M., Russell, W. E. Lee, D. C., 2004, Selective roles for TACE/ADAM17 in the shedding of the epidermal growth factor receptor ligand family. The juxtamembrane stalk determines cleavage efficiency. J Biol Chem. 279:(23): 24179–88PubMedCrossRefGoogle Scholar
  50. Hooper, N. M., Karran, E. H. Turner, A. J., 1997, Membrane protein secretases. Biochem J. 321 (Pt 2): 265–79.PubMedGoogle Scholar
  51. Hung, A. Y. and Sheng, M., 2002, PDZ domains: structural modules for protein complex assembly. J Biol Chem. 277:(8): 5699–702.PubMedCrossRefGoogle Scholar
  52. Itai, T., Tanaka, M. Nagata, S., 2001, Processing of tumor necrosis factor by the membrane-bound TNF-alpha-converting enzyme, but not its truncated soluble form. Eur J Biochem. 268:(7): 2074–82.PubMedCrossRefGoogle Scholar
  53. Jolly-Tornetta, C. and Wolf, B. A., 2000, Protein kinase C regulation of intracellular and cell surface amyloid precursor protein (APP) cleavage in CHO695 cells. Biochemistry. 39:(49): 15282–90.PubMedCrossRefGoogle Scholar
  54. Kahn, J., Walcheck, B., Migaki, G. I., Jutila, M. A. Kishimoto, T. K., 1998, Calmodulin regulates L-selectin adhesion molecule expression and function through a protease-dependent mechanism. Cell. 92:(6): 809–18.PubMedCrossRefGoogle Scholar
  55. Knebel, A., Rahmsdorf, H. J., Ullrich, A. Herrlich, P., 1996, Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. Embo J. 15:(19): 5314–25.PubMedGoogle Scholar
  56. Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C. Fahrenholz, F., 1999, Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A. 96:(7): 3922–7.PubMedCrossRefGoogle Scholar
  57. Lanni, C., Mazzucchelli, M., Porrello, E., Govoni, S. Racchi, M., 2004, Differential involvement of protein kinase C alpha and epsilon in the regulated secretion of soluble amyloid precursor protein. Eur J Biochem. 271:(14): 3068–75.PubMedCrossRefGoogle Scholar
  58. Le Gall, S. M., Auger, R., Dreux, C. Mauduit, P., 2003, Regulated cell surface pro-EGF ectodomain shedding is a zinc metalloprotease-dependent process. J Biol Chem. 278:(46): 45255–68.PubMedCrossRefGoogle Scholar
  59. Li, X. and Fan, H., 2004, Loss of ectodomain shedding due to mutations in the metalloprotease and cysteine-rich/disintegrin domains of the tumor necrosis factor-alpha converting enzyme (TACE). J Biol Chem. 279:(26): 27365–75PubMedCrossRefGoogle Scholar
  60. Lopez-Otin, C. and Overall, C. M., 2002, Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol. 3:(7): 509–19.PubMedCrossRefGoogle Scholar
  61. Luetteke, N. C., Qiu, T. H., Peiffer, R. L., Oliver, P., Smithies, O. Lee, D. C., 1993, TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell. 73:(2): 263–78.PubMedCrossRefGoogle Scholar
  62. Mann, G. B., Fowler, K. J., Gabriel, A., Nice, E. C., Williams, R. L. Dunn, A. R., 1993, Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell. 73:(2): 249–61.PubMedCrossRefGoogle Scholar
  63. Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., Reddy, P., Wolfson, M. F., Rauch, C. T., Castner, B. J., Davis, R., Clarke, H. R., Petersen, M., Fitzner, J. N., Cerretti, D. P., March, C. J., Paxton, R. J., Black, R. A. Bode, W., 1998, Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc Natl Acad Sci U S A. 95:(7): 3408–12.PubMedCrossRefGoogle Scholar
  64. Massague, J. and Pandiella, A., 1993, Membrane-anchored growth factors. Annu Rev Biochem. 62: 515–41.PubMedCrossRefGoogle Scholar
  65. Matthews, V., Schuster, B., Schutze, S., Bussmeyer, I., Ludwig, A., Hundhausen, C., Sadowski, T., Saftig, P., Hartmann, D., Kallen, K. J. Rose-John, S., 2003, Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem. 278:(40): 38829–39.PubMedCrossRefGoogle Scholar
  66. McGeehan, G. M., Becherer, J. D., Bast, R. C., Jr., Boyer, C. M., Champion, B., Connolly, K. M., Conway, J. G., Furdon, P., Karp, S., Kidao, S. et al., 1994, Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature. 370:(6490): 558–61.PubMedCrossRefGoogle Scholar
  67. Merlos-Suarez, A., Fernandez-Larrea, J., Reddy, P., Baselga, J. Arribas, J., 1998, Pro-tumor necrosis factor-alpha processing activity is tightly controlled by a component that does not affect notch processing. J Biol Chem. 273:(38): 24955–62.PubMedCrossRefGoogle Scholar
  68. Merlos-Suarez, A., Ruiz-Paz, S., Baselga, J. Arribas, J., 2001, Metalloprotease-dependent protransforming growth factor-alpha ectodomain shedding in the absence of tumor necrosis factor-alpha-converting enzyme. J Biol Chem. 276:(51): 48510–7.PubMedGoogle Scholar
  69. Mezyk, R., Bzowska, M. Bereta, J., 2003, Structure and functions of tumor necrosis factor-alpha converting enzyme. Acta Biochim Pol. 50:(3): 625–45.PubMedGoogle Scholar
  70. Miettinen, P. J., Berger, J. E., Meneses, J., Phung, Y., Pedersen, R. A., Werb, Z. Derynck, R., 1995, Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature. 376:(6538): 337–41.PubMedCrossRefGoogle Scholar
  71. Milla, M. E., Leesnitzer, M. A., Moss, M. L., Clay, W. C., Carter, H. L., Miller, A. B., Su, J. L., Lambert, M. H., Willard, D. H., Sheeley, D. M., Kost, T. A., Burkhart, W., Moyer, M., Blackburn, R. K., Pahel, G. L., Mitchell, J. L., Hoffman, C. R. Becherer, J. D., 1999, Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). J Biol Chem. 274:(43): 30563–70.PubMedCrossRefGoogle Scholar
  72. Mizui, Y., Yamazaki, K., Sagane, K. Tanaka, I., 1999, cDNA cloning of mouse tumor necrosis factor-alpha converting enzyme (TACE) and partial analysis of its promoter. Gene. 233:(1–2): 67–74.PubMedCrossRefGoogle Scholar
  73. Mohan, M. J., Seaton, T., Mitchell, J., Howe, A., Blackburn, K., Burkhart, W., Moyer, M., Patel, I., Waitt, G. M., Becherer, J. D., Moss, M. L. Milla, M. E., 2002, The tumor necrosis factor-alpha converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity. Biochemistry. 41:(30): 9462–9.PubMedCrossRefGoogle Scholar
  74. Montero, J. C., Yuste, L., Diaz-Rodriguez, E., Esparis-Ogando, A. Pandiella, A., 2000, Differential shedding of transmembrane neuregulin isoforms by the tumor necrosis factor-alpha-converting enzyme. Mol Cell Neurosci. 16:(5): 631–48.PubMedCrossRefGoogle Scholar
  75. Montero, J. C., Yuste, L., Diaz-Rodriguez, E., Esparis-Ogando, A. Pandiella, A., 2002, Mitogen-activated protein kinase-dependent and-independent routes control shedding of transmembrane growth factors through multiple secretases. Biochem J. 363: (Pt 2): 211–21.PubMedCrossRefGoogle Scholar
  76. Moss, M. L., Jin, S. L., Milla, M. E., Bickett, D. M., Burkhart, W., Carter, H. L., Chen, W. J., Clay, W. C., Didsbury, J. R., Hassler, D., Hoffman, C. R., Kost, T. A., Lambert, M. H., Leesnitzer, M. A., McCauley, P., McGeehan, G., Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton, L. K., Schoenen, F., Seaton, T., Su, J. L., Becherer, J. D. et al., 1997, Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 385:(6618): 733–6.PubMedCrossRefGoogle Scholar
  77. Moss, M. L. and Lambert, M. H., 2002, Shedding of membrane proteins by ADAM family proteases. Essays Biochem. 38: 141–53.PubMedGoogle Scholar
  78. Mullberg, J., Schooltink, H., Stoyan, T., Heinrich, P. C. Rose-John, S., 1992, Protein kinase C activity is rate limiting for shedding of the interleukin-6 receptor. Biochem Biophys Res Commun. 189:(2): 794–800.PubMedCrossRefGoogle Scholar
  79. Mullberg, J., Oberthur, W., Lottspeich, F., Mehl, E., Dittrich, E., Graeve, L., Heinrich, P. C. Rose-John, S., 1994, The soluble human IL-6 receptor. Mutational characterization of the proteolytic cleavage site. J Immunol. 152:(10): 4958–68.PubMedGoogle Scholar
  80. Mullberg, J., Althoff, K., Jostock, T. Rose-John, S., 2000, The importance of shedding of membrane proteins for cytokine biology. Eur Cytokine Netw. 11:(1): 27–38.PubMedGoogle Scholar
  81. Nagano, O., Murakami, D., Hartmann, D., De Strooper, B., Saftig, P., Iwatsubo, T., Nakajima, M., Shinohara, M. Saya, H., 2004, Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation. J Cell Biol. 165:(6): 893–902.PubMedCrossRefGoogle Scholar
  82. Nelson, K. K., Schlondorff, J. Blobel, C. P., 1999, Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor alpha convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2beta. Biochem J. 343 Pt 3: 673–80.PubMedCrossRefGoogle Scholar
  83. Pan, B., Farrugia, A. N., To, L. B., Findlay, D. M., Green, J., Lynch, K. Zannettino, A. C., 2004, The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-alpha converting enzyme (TACE). J Bone Mine Res. 19:(1): 147–54.CrossRefGoogle Scholar
  84. Pandiella, A. and Massague, J., 1991, Cleavage of the membrane precursor for transforming growth factor alpha is a regulated process. Proc Natl Acad Sci U S A. 88:(5): 1726–30.PubMedCrossRefGoogle Scholar
  85. Patel, I. R., Attur, M. G., Patel, R. N., Stuchin, S. A., Abagyan, R. A., Abramson, S. B. Amin, A. R., 1998, TNF-alpha convertase enzyme from human arthritis-affected cartilage: isolation of cDNA by differential display, expression of the active enzyme, and regulation of TNF-alpha. J Immunol. 160:(9): 4570–9.PubMedGoogle Scholar
  86. Peiretti, F., Canault, M., Deprez-Beauclair, P., Berthet, V., Bonardo, B., Juhan-Vague, I. Nalbone, G., 2003a, Intracellular maturation and transport of tumor necrosis factor alpha converting enzyme. Exp Cell Res. 285:(2): 278–85.PubMedCrossRefGoogle Scholar
  87. Peiretti, F., Deprez-Beauclair, P., Bonardo, B., Aubert, H., Juhan-Vague, I. Nalbone, G., 2003b, Identification of SAP97 as an intracellular binding partner of TACE. J Cell Sci. 116: (Pt 10): 1949–57.PubMedCrossRefGoogle Scholar
  88. Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. J. Black, R. A., 1998, An essential role for ectodomain shedding in mammalian development. Science. 282:(5392): 1281–4.PubMedCrossRefGoogle Scholar
  89. Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C. Ullrich, A., 1999, EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 402:(6764): 884–8.PubMedGoogle Scholar
  90. Reddy, P., Slack, J. L., Davis, R., Cerretti, D. P., Kozlosky, C. J., Blanton, R. A., Shows, D., Peschon, J. J. Black, R. A., 2000, Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. J Biol Chem. 275:(19): 14608–14.PubMedCrossRefGoogle Scholar
  91. Russell, R. G. and Rogers, M. J., 1999, Bisphosphonates: from the laboratory to the clinic and back again. Bone. 25:(1): 97–106.PubMedCrossRefGoogle Scholar
  92. Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P. Blobel, C. P., 2004, Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol. 164:(5): 769–79.PubMedCrossRefGoogle Scholar
  93. Schantl, J. A., Roza, M., Van Kerkhof, P. Strous, G. J., 2004, The growth hormone receptor interacts with its sheddase, the tumour necrosis factor-alpha-converting enzyme (TACE). Biochem J. 377: (Pt 2): 379–84.PubMedCrossRefGoogle Scholar
  94. Schlondorff, J. and Blobel, C. P., 1999, Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci. 112 (Pt 21): 3603–17.PubMedGoogle Scholar
  95. Schlondorff, J., Becherer, J. D. Blobel, C. P., 2000, Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem J. 347 Pt 1: 131–8.PubMedCrossRefGoogle Scholar
  96. Schlondorff, J., Lum, L. Blobel, C. P., 2001, Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that are distinct from the tumor necrosis factor alpha convertase. J Biol Chem. 276:(18): 14665–74.PubMedCrossRefGoogle Scholar
  97. Sibilia, M. and Wagner, E. F., 1995, Strain-dependent epithelial defects in mice lacking the EGF receptor. Science. 269:(5221): 234–8.PubMedGoogle Scholar
  98. Slack, B. E., Ma, L. K. Seah, C. C., 2001, Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-alpha converting enzyme. Biochem J. 357: (Pt 3): 787–94.PubMedCrossRefGoogle Scholar
  99. Srour, N., Lebel, A., McMahon, S., Fournier, I., Fugere, M., Day, R. Dubois, C. M., 2003, TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett. 554:(3): 275–83.PubMedCrossRefGoogle Scholar
  100. Tanaka, M., Nanba, D., Mori, S., Shiba, F., Ishiguro, H., Yoshino, K., Matsuura, N. Higashiyama, S., 2004, ADAM-binding protein eve-1 is required for Ectodomain shedding of EGF receptor ligands. J Biol Chem. ‘in press’.Google Scholar
  101. Teixido, J., Wong, S. T., Lee, D. C. Massague, J., 1990, Generation of transforming growth factor-alpha from the cell surface by an O-glycosylation-independent multistep process. J Biol Chem. 265:(11): 6410–5.PubMedGoogle Scholar
  102. Thabard, W., Collette, M., Bataille, R. Amiot, M., 2001, Protein kinase C delta and eta isoenzymes control the shedding of the interleukin 6 receptor alpha in myeloma cells. Biochem J. 358: (Pt 1): 193–200.PubMedCrossRefGoogle Scholar
  103. Thathiah, A., Blobel, C. P. Carson, D. D., 2003, Tumor necrosis factor-alpha converting enzyme/ADAM 17 mediates MUC1 shedding. J Biol Chem. 278:(5): 3386–94.PubMedCrossRefGoogle Scholar
  104. Thathiah, A. and Carson, D. D., 2004, MT1-MMP mediates MUC1 shedding independently of TACE/ADAM17. Biochem J. 382: Pt1: 363–73Google Scholar
  105. Tsou, C. L., Haskell, C. A. Charo, I. F., 2001, Tumor necrosis factor-alpha-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem. 276:(48): 44622–6.PubMedCrossRefGoogle Scholar
  106. Villanueva de la Torre, T., Bech-Serra, J. J., Ruiz-Paz, S., Baselga, J. Arribas, J., 2004, Inactivating mutations block the tumor necrosis factor-alpha-converting enzyme in the early secretory pathway. Biochem Biophyhs Res Commun. 314:(4): 1028–35.CrossRefGoogle Scholar
  107. Vincent, B., Paitel, E., Saftig, P., Frobert, Y., Hartmann, D., De Strooper, B., Grassi, J., Lopez-Perez, E. Checler, F., 2001, The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem. 276:(41): 37743–6.PubMedGoogle Scholar
  108. von Tresckow, B., Kallen, K. J., von Strandmann, E. P., Borchmann, P., Lange, H., Engert, A. Hansen, H. P., 2004, Depletion of cellular cholesterol and lipid rafts increases shedding of CD30. J Immunol. 172:(7): 4324–31.Google Scholar
  109. Wang, K. Y., Arima, N., Higuchi, S., Shimajiri, S., Tanimoto, A., Murata, Y., Hamada, T. Sasaguri, Y., 2000, Switch of histamine receptor expression from H2 to H1 during differentiation of monocytes into macrophages. FEBS Lett. 473:(3): 345–8.PubMedCrossRefGoogle Scholar
  110. Wang, X., He, K., Gerhart, M., Huang, Y., Jiang, J., Paxton, R. J., Yang, S., Lu, C., Menon, R. K., Black, R. A., Baumann, G. Frank, S. J., 2002, Metalloprotease-mediated GH receptor proteolysis and GHBP shedding. Determination of extracellular domain stem region cleavage site. J Biol Chem. 277:(52): 50510–9.PubMedCrossRefGoogle Scholar
  111. Weiss, F. U., Daub, H. Ullrich, A., 1997, Novel mechanisms of RTK signal generation. Curr Opin Genet Dev. 7:(1): 80–6.PubMedCrossRefGoogle Scholar
  112. Weskamp, G., Schlondorff, J., Lum, L., Becherer, J. D., Kim, T. W., Saftig, P., Hartmann, D., Murphy, G. Blobel, C. P., 2004, Evidence for a critical role of the tumor necrosis factor alpha convertase (TACE) in ectodomain shedding of the p75 neurotrophin receptor (p75NTR). J Biol Chem. 279:(6): 4241–9.PubMedCrossRefGoogle Scholar
  113. Wheeler, D. L., Ness, K. J., Oberley, T. D. Verma, A. K., 2003, Protein kinase Cepsilon is linked to 12-O-tetradecanoylphorbol-13-acetate-induced tumor necrosis factor-alpha ectodomain shedding and the development of metastatic squamous cell carcinoma in protein kinase Cepsilon transgenic mice. Cancer Res. 63:(19): 6547–55.PubMedGoogle Scholar
  114. Yan, Y., Shirakabe, K. Werb, Z., 2002, The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J Cell Biol. 158:(2): 221–6.PubMedCrossRefGoogle Scholar
  115. Yarden, Y. and Sliwkowski, M. X., 2001, Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2:(2): 127–37.PubMedCrossRefGoogle Scholar
  116. Zeng, Y. X., Somasundaram, K. el-Deiry, W. S., 1997, AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet. 15:(1): 78–82.PubMedCrossRefGoogle Scholar
  117. Zhang, Z., Kolls, J. K., Oliver, P., Good, D., Schwarzenberger, P. O., Joshi, M. S., Ponthier, J. L. Lancaster, J. R., Jr., 2000, Activation of tumor necrosis factor-alpha-converting enzyme-mediated ectodomain shedding by nitric oxide. J Biol Chem. 275:(21): 15839–44.PubMedCrossRefGoogle Scholar
  118. Zhang, Z., Oliver, P., Lancaster, J. J., Schwarzenberger, P. O., Joshi, M. S., Cork, J. Kolls, J. K., 2001, Reactive oxygen species mediate tumor necrosis factor alpha-converting, enzyme-dependent ectodomain shedding induced by phorbol myristate acetate. Faseb J. 15:(2): 303–5.PubMedGoogle Scholar
  119. Zhao, L., Shey, M., Farnsworth, M. Dailey, M. O., 2001, Regulation of membrane metalloproteolytic cleavage of L-selectin (CD62l) by the epidermal growth factor domain. J Biol Chem. 276:(33): 30631–40.PubMedCrossRefGoogle Scholar
  120. Zheng, Y., Schlondorff, J. Blobel, C. P., 2002, Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J Biol Chem. 277:(45): 42463–70.PubMedCrossRefGoogle Scholar
  121. Zhou, A., Webb, G., Zhu, X. Steiner, D. F., 1999, Proteolytic processing in the secretory pathway. J Biol Chem. 274:(30): 20745–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Joaquín Arribas
    • 1
  • Soraya Ruiz-Paz
    • 1
  1. 1.Medical Oncology Research ProgramVall d’Hebron University Hospital Research InstituteBarcelonaSpain

Personalised recommendations