Overview of ADAMTS Proteinases and ADAMTS 2

Procollagen III N-proteinase
  • Daniel S. Greenspan
  • Wei-Man Wang
Part of the Proteases in Biology and Disease book series (PBAD, volume 4)


Dermatosparaxis and Ehlers-Danlos syndrome type VIIC (EDS VIIC) are recessive, heritable disorders of domestic animals and humans, respectively. These phenotypes are primarily characterized by extreme fragility of the skin, and are marked by accumulation in skin of processing intermediates in the conversion of procollagen precursors into mature type I collagen monomers. The latter are capable of forming the fibrils that are the major structural components of dermis. This accumulation of precursors is due to a deficiency in skin in levels of a proteolytic activity that normally cleaves NH2-terminal peptide extensions (N-propeptides) from the procollagen precursors of collagen types I and II, the latter being the major collagen type of cartilage. In recent years, this procollagen N-proteinase activity has been demonstrated to be furnished by the metalloproteinase ADAMTS-2. Although the activity responsible for cleaving the type III procollagen N-propeptide has long been thought to be furnished by a different proteinase than that which cleaves the N-propeptides of procollagens I and II, recent evidence has shown ADAMTS-2 to have high levels of all three activities. Thus, a defect in ADAMTS-2 expression results in deficient procollagen III processing, which probably contributes to the Dermatosparaxis/EDS VIIC phenotype. ADAMTS-2 belongs to the recently described family of ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs), members of which are related by a common domain structure and sequence homologies. There are 19 known ADAMTS proteinases in vertebrates, and defects in a number of these are implicated as causal in diseases that include dermatosparaxis/EDS VIIC, osteoarthritis, inflammatory joint disease and thrombotic thrombocytopenic purpura. ADAMTS proteinases are also involved in growth, organogenesis and fertility in a broad spectrum of species that range from humans to worms.

Key words

dermatosparaxis Ehlers-Danlos syndrome type VIIC ADAMTS-2 procollagen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbaszade, I., Liu, R.-Q., Yang, F., Rosenfeld, S.A., Ross, O.H., Link, J.R., Ellis, D.M., Tortorella, M.D., Pratta, M.A., Hollis, J.M., Wynn, R., Duke, J.L., George, H.J., Hillman, M.C., Jr., Murphy, K., Wiswall, B.H., Copeland, R.A., Decicco, C.P., Bruckner, R., Nagase, H., Itoh, Y., Newton, R.C., Magolda, R.L., Trzaskos, J.M., Hollis, G.F., Arner, E.C., Burn, T.C., 1999, Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J. Biol. Chem. 274: 23443–23450.PubMedCrossRefGoogle Scholar
  2. Bateman, J.F., Cole, W.G., Pillow, J.J., Ramshaw, J.A.M., 1986, Induction of procollagen processing in fibroblast cultures by neutral polymers. J. Biol. Chem. 261: 4198–4203.PubMedGoogle Scholar
  3. Blelloch, R., Kimble, J., 1999, Control of organ shape by a secreted metalloprotease in the a nematode Caenorhabditis elegans. Nature 399: 586–590.PubMedCrossRefGoogle Scholar
  4. Bork, P., Beckmann, G., 1993, The CUB domain, A widespread module in developmentally regulated proteins. J. Mol. Biol. 231: 539–545.PubMedCrossRefGoogle Scholar
  5. Byers, P.H., 1995, Disorders of collagen biosynthesis and structure. In: The Metabolic And Molecular Bases of Inherited Disease, 7th Edition. Scriver CR, Beaudet AL, Sly WS, and Valle D. Eds. McGraw-Hill, pp. 4029–4078.Google Scholar
  6. Cal, S., Obaya, A.J., Llamazares, M., Garabaya, C., Quesada, V., Lopez-Otin, C., 2002, Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283: 49–62.PubMedCrossRefGoogle Scholar
  7. Clark, T.G., Conway, S.J., Scott, I.C., Labosky, P.A., Winnier, G., Bundy, J., Hogan, B.L.M., Greenspan, D.S., 1999, The mammalian Tolloid-like gene, Tll1, is necessary for normal septation and positioning of the heart. Development 126: 2631–2642.PubMedGoogle Scholar
  8. Colige, A., Beschin, A., Samyn, B., Goebels, Y., Van Beeumen, J., Nusgens, B.V., Lapière, C.M., 1995, Characterization and partial amino acid sequencing of a 107-kDa procollagen I N-proteinase purified by affinity chromatography on immobilized type XIV collagen. J. Biol. Chem. 270: 16724–16730.PubMedCrossRefGoogle Scholar
  9. Colige, A., Li, S.-W., Sieron, A.L., Nusgens, B.V., Prockop, D.J., Lapière, C.M., 1997, cDNA cloning and expression of bovine procollagen I N-proteinase: A new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components. Proc. Natl. Acad. Sci. USA 94: 2374–2379.PubMedCrossRefGoogle Scholar
  10. Colige, A., Sieron, A.L., Li, S.-W., Schwarze, U., Petty, E., Wertelecki, W., Wilcox, W., Krakow, D., Cohn, D.H., Reardon, W., Byers, P.H., Lapière, C.M., Prockop, D.J., Nusgens, B.V., 1999, Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am. J. Hum. Genet. 65: 308–317.PubMedCrossRefGoogle Scholar
  11. Colige, A., Vandenberghe, I., Thiry, M., Lambert, C.A., Beeumen, J.V., Li, S.-W., Prockop, D.J., Lapière, C.M., Nusgens, B.V., 2002, Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J. Biol. Chem. 277: 5756–5766.PubMedCrossRefGoogle Scholar
  12. Collins-Racie, L.A., Flannery, C.R., Zeng, W., Corcoran, C., Annis-Freeman, B., Agostino, M.J., Arai, M., DiBlasio-Smith, E., Dorner, A.J., Georgiadis, K.E., Jin, M., Tan, X.-Y., Morris, E.A., LaVallie, E.R., 2004, ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol. 23: 219–230.PubMedCrossRefGoogle Scholar
  13. D’Alessio, M., Ramirez, F., Blumberg, B.D., Wirtz, M.K., Rao, V.H., Godfrey, M.D., Hollister, D.W., 1991, Characterization of a COL1A1 splicing defect in a case of Ehlers-Danlos syndrome type VII: Further evidence of molecular homogeneity. Am. J. Hum. Genet. 49: 400–406.PubMedGoogle Scholar
  14. Fernandes, R.J., Hirohata, S., Engle, J.M., Collige, A., Cohn, D.H., Eyre, D.R., and Apte, S.S., 2001, Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J. Biol. Chem. 276: 31502–31509.PubMedCrossRefGoogle Scholar
  15. Fessler, L.I., Timpl, R., Fessler, J.H., 1981, Assembly and processing of procollagen type III in chick embryo blood vessels. J. Biol. Chem. 256: 2531–2537.PubMedGoogle Scholar
  16. Fjölstad, M., Helle, O., 1973, A hereditary dysplasia of collagen tissues in sheep. J. Pathol. 112: 183–188.CrossRefGoogle Scholar
  17. Greenspan, D.S., 2005, Biosynthetic processing of collagen molecules. Top. Curr. Chem. 247: In press.Google Scholar
  18. Halila, R., Peltonen, L., 1984, Neutral protease cleaving the N-terminal propeptide of type III procollagen: Partial purification and characterization of the enzyme from smooth muscle cells of bovine aorta. Biochemistry 23: 1251–1256.PubMedCrossRefGoogle Scholar
  19. Halila, R., Peltonen, L., 1986, Purification of human procollagen type III N-proteinase from placenta and preparation of antiserum. Biochem. J. 239: 47–52.PubMedGoogle Scholar
  20. Hall, N.G., Klenotic, P., Anand-Apte, B., Apte, S.S., 2003, ADAMTSL-3/punctin-2, a novel glycoprotein in extracellular matrix related to the ADAMTS family of metalloproteases. Matrix Biol. 22: 501–510.PubMedCrossRefGoogle Scholar
  21. Hanset, R., Ansay, M., 1967, Dermatosparaxie (peau déchirée) chez le veau: un défaut general du tissu conjonctif, de nature héréditaire. Ann. Med. Vet. 7: 451–470.Google Scholar
  22. Hanset, R., 1971, Dermatosparaxis of the calf, a genetic defect of the connective tissue. 1. Genetic aspects. Hoppe-Seyler’s Z. Physiol. Chem. 352:13.Google Scholar
  23. Hashimoto, G., Aoki, T., Nakamura, H., Tanzawa, K., Okada, Y., 2001, Inhibition of ADAMTS4 (aggrecanaase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Lett. 494: 192–195.PubMedCrossRefGoogle Scholar
  24. Helseth, D.L., Jr., Veis, A., 1981, Collagen self-assembly in vitro. Differentiating specific telopeptide-dependent interactions using selective enzyme modification and the addition of free amino telopeptide. J. Biol. Chem. 256: 7118–7128.PubMedGoogle Scholar
  25. Hirohata, S., Wang, L.W., Miyagi, M., Yan, L., Seldin, M.G., Keene, D.R., Crabb, J.W., Apte, S.S., 2002, Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix. J. Biol. Chem. 277: 12182–12189.PubMedCrossRefGoogle Scholar
  26. Hojima, Y., McKenzie, J., van der Rest, M., Prockop, D..J., 1989, Type I procollagen N-proteinase from chick embryo tendons. Purification of a new 500-kDa form of the enzyme and identification of the catalytically active polypeptides. J. Biol. Chem. 264: 11336–11345.PubMedGoogle Scholar
  27. Hojima, Y., Mörgelin, M.M., Engel, J., Boutillon, M.M., van der Rest, M., McKenzie, J., Chen, G.-C., Rafi, N., Romani, A.M., Prockop, D.J., 1994, Characterization of type I procollagen N-proteinase from fetal bovine tendon and skin. J. Biol. Chem. 269: 11381–11390.PubMedGoogle Scholar
  28. Hojima, Y., van der Rest, M., Prokop, D.J., 1985, Type I procollagen carboxyl-terminal proteinase from chick embryo tendons. J. Biol. Chem. 260: 15996–16003.PubMedGoogle Scholar
  29. Holbrook, K.A., Byers, P.H., Counts, D.F., Hegreberg, G.A., 1980, Dermatosparaxis in a Himalayan cat. II. Ultrastructural studies of dermal collagen. J. Invest. Dermatol. 74: 100–104.PubMedCrossRefGoogle Scholar
  30. Holmes, D.H., Watson, R.B., Steinmann, B., Kadler, K.E., 1993, Morphology of type I collagen fibrils formed in vivo and in vitro is determined by the conformation of the retained N-Propeptide. J. Biol. Chem. 268: 15758–15765.PubMedGoogle Scholar
  31. Hurskainen, T.L., Hirohata, S., Seldin, M.F., Apte, S.S., 1999, ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases: General features f and genomic distribution of the ADAM-TS family. J. Biol. Chem. 274: 25555–25563.PubMedCrossRefGoogle Scholar
  32. Kashiwagi, M., Tortorella, M., Nagase, H., Brew, K., 2001, TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanasae 2 (ADAM-TS5). J. Biol. Chem. 276: 12501–12504.PubMedCrossRefGoogle Scholar
  33. Kessler, E., Adar, R., Goldberg, B., Niece, R., 1986, Partial purification and characterization of a procollagen C-proteinase from the culture medium of mouse fibroblasts. Collagen Relat Res 6: 249–266.Google Scholar
  34. Kessler, E., Takahara, K., Biniaminov, L., Brusel, M., Greenspan, D.S., 1996, Bone morphogenetic protein-1: The type I procollagen C-proteinase. Science 271: 360–362.PubMedGoogle Scholar
  35. Kramerova, I.A., Kawaguchi, N., Fessler, L.I., Nelson, R.E., Chen, Y., Kramerov, A.A., Kusche-Gullberg, M., Kramer, J.M., Ackley, B.D., Sieron, A.L., Prockop, D.J., Fessler, J.H., 2000, Papilin in development; a pericellular proein with a homology to the ADAMTS metalloproteinases. Development 127: 5475–5485.PubMedGoogle Scholar
  36. Kuhn, K., 1987, The classical collagens: types I, II and III. In: Structure and function of collagen types. Mayne R and Burgeson RE. Eds. Academic Press, Orlando, pp.1–42.Google Scholar
  37. Kuno, K., Matsushima, K., 1998, ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region. J. Biol. Chem. 273: 13912–13917.PubMedCrossRefGoogle Scholar
  38. Kuno, K., Kanada, N., Nakashima, E., Fujiki, F., Ichimura, F., Matsushima, K., 1997, Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J. Biol. Chem. 272: 556–562.PubMedCrossRefGoogle Scholar
  39. Kuna, K., Okada, Y., Kawashima, H., Nakamura, H., Miyasaka, M., Ohno, H., Matsushima, K., 2000, ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett. 478: 241–245.CrossRefGoogle Scholar
  40. Lapière, C.M., Lenaers, A., Kohn, L.D., 1971, Procollagen peptidease: An enzyme excising the coordination peptides of procollagen. Proc. Natl. Acad. Sci. USA 68: 3054–3058.PubMedCrossRefGoogle Scholar
  41. Lee, S., Solow-Cordero, D.E., Kessler, E., Takahara, K., Greenspan, D.S., 1997, Transforming growth factor-β regulation of bone morphogenetic protein-1/procollagen C-proteinase and related proteins in fibrogenic cells and keratinocytes. J. Biol. Chem. 272: 19059–19066.PubMedCrossRefGoogle Scholar
  42. Lenaers, A., Ansay, M., Nusgens, B.V., Lapiere, C.M., 1971, Collagen made of extended α-chains, procollagen, in genetically-defective dermatosparaxic calves. Eur. J. Biochem. 23: 533–543.PubMedCrossRefGoogle Scholar
  43. Levy, G.G., Nichols, W.C., Lian, E.C., Foroud, T., McClintick, J.N., McGeen B.M., Yang, A.Y., Siemleniak, D.R., Stark, K.R., Gruppo, R., Sarode, R., Shurin, S.B., Chandrasekaran, V., Stabler, S.P., Sabio, H., Bouhassira, E.E., Upshaw, J.D., Jr., Ginsburg, D., Tsai, H.-M., 2001, Mutattions in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413: 488–494.PubMedCrossRefGoogle Scholar
  44. Li, S.-W., Arita, M., Fertala, A., Bao, Y., Kopen, G.C., Långsjö, T.K., Hyttinen, M.M., Helminen, H.J., Prockop, D.J., 2001, Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility. Biochem. J. 355: 271–278.PubMedCrossRefGoogle Scholar
  45. Li, S.-W., Sieron, A.L., Fertala, A., Hojima, Y., Arnold, W.V., Prockop, D.J., 1996, The C-proteinase that processes procollagens to fibrillar collagens is identical to the protein previously identified as bone morphogenic protein-1. Proc. Natl. Acad. Sci. USA 93: 5127–5130.PubMedCrossRefGoogle Scholar
  46. Luque, A., Carpizo, D.R., Iruela-Arispe, M.L., 2003, ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J. Biol. Chem. 278: 23656–23665.PubMedCrossRefGoogle Scholar
  47. Matthews, R.T., Gary, S.C., Zerillo, C., Pratta, M., Solomon, K., Arner, E.C., Hockfield, S., 2000, Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member. J. Biol. Chem. 275: 22695–22703.PubMedCrossRefGoogle Scholar
  48. Mould, A.P., Hulmes, D.J.S., 1987, Surface-induced aggregation of type I procollagen. J. Mol. Biol. 195: 543–553.PubMedCrossRefGoogle Scholar
  49. Myllyharju, J., Kivirikko, K.I., 2004, Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20: 33–43.PubMedCrossRefGoogle Scholar
  50. Nardi, J. B., Martos, R., Walden, K.K., Lampe, D.J., Robertson, H.M., 1999, Expression of lacunin, a large multidomain extracellular matrix protein, accompanies morphogenesis of epithelial monolayers in Manduca sexta. Insect Biochem. Mol. Biol. 29: 883–897.PubMedCrossRefGoogle Scholar
  51. Nusgens, B.V., Goebels, Y., Shinkai, H., Lapière, C.M., 1980, Procollagen type III N-terminal endopeptidase in fibroblast culture Biochem. J. 191: 699–706.PubMedGoogle Scholar
  52. Nusgens, B.V., Verellen-Dumoulin, G., Hermans-Le, T., De Paepe, A., Nuytinck, L., Piérard, G.E., Lapière, C.M., 1992, Evidence for a relationship between Ehlers-Danlos type VIIC in humans and bovine dermatosparaxis. Nat. Genet. 1: 214–221.PubMedCrossRefGoogle Scholar
  53. Pappano, W.N., Steiglitz, B.M., Scott, I.C., Keene, D.R., Greenspan, D.S., 2003, Use of Bmp1/Tll1 doubly homozygous null mice and proteomics to identify and validate in vivo substrates of bone morphogenetic protein 1/Tolloid-like metalloproteinases. Mol. Cell. Biol. 23: 4428–4438.PubMedCrossRefGoogle Scholar
  54. Piérard, G.E. and Lapière, C.M., 1976, Skin in dermatosparaxis: dermal microarchitecture and biomechanical properties. J. Invest. Dermatol. 66: 2–7.PubMedCrossRefGoogle Scholar
  55. Prockop, D.J., Hulmes, D.J.S., 1994, Assembly of collagen fibrils de novo from soluble precursors: polymerization and copolymerization of procollagen, pN-collagen, and mutated collagens. In: Extracellular matrix assembly and structure. Yurchenceo PD, Birk DE, and Mechan RP. Eds. Academic Press, New York, pp. 47–90.Google Scholar
  56. Prockop, D.J., Kivirikko, K.I., 1995, Collagens: Molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64: 403–434.PubMedCrossRefGoogle Scholar
  57. Prockop, D.J., Sieron, A.L., Li, S.-W., 1998, Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol. 16: 399–408.PubMedCrossRefGoogle Scholar
  58. Rodríguez-Manzaneque, J.C., Westling, J., Thai, S.N.-M., Luque, A., Knauper, V., Murphy, G., Sandy, J.D., Iruela-Arispe, M.L., 2002, ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem. Biophys. Res. Commun. 293: 501–508.PubMedCrossRefGoogle Scholar
  59. Sandy, J.D., westling, J., Kenagy, R.D., Iruela-Arispe, M.L., Verscharen C., Rodriguez-Mazaneque, J.C., Zimmermann, D.R., Lemire, J.M., Fischer, J.W., Wight, T.N., and Clowes, A.W., 2001, Versican V1 proeolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J. Biol. Chem. 276: 13372–13378.PubMedCrossRefGoogle Scholar
  60. Schnieke, A., Harbers, K., Jaenisch, R., 1983, Embryonic lethal mutation in mice induced by m retrovirus insertion into the alpha 1(I) collagen gene. Nature 304: 315–320.PubMedCrossRefGoogle Scholar
  61. Scott, I.C., Blitz, I.L., Pappano, W.N., Imamura, Y., Clark, T.G., Steiglitz, B.M., Thomas, C.L., Maas, S.A., Takahara, K., Cho, K.W.Y., Greenspan, D.S., 1999, Mammalian BMP-1/Tolloid-related metalloprroteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. Dev. Biol. 213: 283–300.PubMedCrossRefGoogle Scholar
  62. Shindo, T., Kurihara, H., Kuno, K., Yokoyama, H., Wada, T., Kurihara, Y., Imai, T., Wang, Y., Ogata, M., Nishimatsu, H., Moriyama, N., Oh-hashi, Y., Morita, H., Ishikawa, T., Nagai, R., Yazaki, Y., Matsushima, K., 2000, J. Clin. Invest. 105: 1345–1352.PubMedCrossRefGoogle Scholar
  63. Smith, L.T., Wertelecki, W., Milstone, L.M., Petty, E.M., Seashore, M.R., Braverman, I.M., Jenkins, T.G., Byers, P.H., 1992, Human dermatosparaxis: A form of Ehlers-Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen. Am. J. Hum. Genet. 51: 235–244.PubMedGoogle Scholar
  64. Somerville, R.P.T., Longpré, J.-M., Apel, E.D., Lewis, R.M., Wang, L.W., Sanes, J.R., Leduc, R., Apte, S.S., 2004, ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chodroitin sulfate proteoglycan containing a mucin domain. J. Biol. Chem. 279: 35159–35175.PubMedCrossRefGoogle Scholar
  65. Somerville, R.P.T., Longpre, J.-M., Jungers, K.A., Engle, J.M., Ross, M., Evanko, S., Wight, T.N., Leduc, R., Apte, S.S., 2003, Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J. Biol. Chem. 278: 9503–9513.PubMedCrossRefGoogle Scholar
  66. Stöcker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Rüth, F.-X., McKay, D.B., Bode, W., 1995, The metzincins-topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zincpeptidases. Protein Sci. 4: 823–840.PubMedCrossRefGoogle Scholar
  67. Suzuki, S., Labosky, P.A., Furuta, Y., Hargett, L., Dunn, R., Fogo, A.B., Takahara, K., Peters, D.M.P., Greenspan, D.S., Hogan, B.L.M., 1996, Failure of ventral body wall closure in mouse embryos lacking a procollagen C-proteinase encoded by Bmp1, a mammalian gene related to Drosophila tolloid. Development 122: 3587–3595.PubMedGoogle Scholar
  68. Tortorella, M.D., Arner, E.C., Hills, R., Easton, A., Korte-Sarfaty, J., Fok, K., Wittwer, AJ., Liu, R.-Q., Malfait, A.-M., 2004, α2-Macroglobulin is a novel substrate for ADAMTS-4 and ADAMTS-5 and represents an endogenous inhibitor of these enzymes. J. Biol. Chem. 279: 17554–17561.PubMedCrossRefGoogle Scholar
  69. Tortorella, M.D., Burn, T.C., Pratta, M.A., Abbaszade, I., Hollis, J.M., Liu, R., Rosenfeld, S.A., Copeland, R.A., Decicco, C.P., Wynn, R., Rockwell, A., Yang, F., Duke, J.L., Solomon, K., George, H., Bruckner, R., Nagase, H., Itok, Y., Ellis, D.M., Ross, H., Wiswall, B.H., Murphy, K., Hillman, M.C., Jr, Hollis, G.G., Newton, R.C., Magolda, R.L., Trzaskos, J.M., Arner, E.C., 1999, Purifiction and cloning of aggrecanase-1: A member of the ADAMTS family of proteins. Science 284: 1664–1666.PubMedCrossRefGoogle Scholar
  70. Tosi, M., Duponchel, C., Meo, T., Julier, C., 1987, Complete cDNA sequence of human complement C1s and close physical linkage of the homologous genes C1s and C1r. Biochemistry 26: 8516–8524.PubMedCrossRefGoogle Scholar
  71. Tuderman, L., Kivirikko, K.I., Prockop, D.J., 1978, Partial purification and characterization of a neutral protease which cleaves the N-terminal propeptides from procollagen. Biochemistry 17: 2948–2954.PubMedCrossRefGoogle Scholar
  72. Tuderman, L. and Prockop, D.J., 1982, Procollagen N-proteinase: properties of the enzyme purified from chick embryo tendons. Eur. J. Biochem. 125: 545–549.PubMedCrossRefGoogle Scholar
  73. Vázquez, F., Hastings, G., Ortega, M.-A., Lane, T.F., Oikemus, S., Lombardo, M., Iruela-Arispe, M.L., 1999, METH-1, a human ortholog of ADAMTS-1 and METH-2 are members of a new family of proteins with angio-inhibitory activity. J. Biol. Chem. 274: 23349–23357.PubMedCrossRefGoogle Scholar
  74. Vitagliano, L., Nemethy, G., Zagari, A., Scheraga, H.A., 1995, Structure of the type I collagen molecule based on conformational endrgy computations: the triple-stranded helix and the N-terminal telopeptide. J. Mol. Biol. 247: 69–80.PubMedCrossRefGoogle Scholar
  75. Wang, W.-M., Lee, S., Steiglitz, B.M., Scott, I.C., Lebares, C.C., Allen, M.L., Brenner, M.C., Takahara, K., Greenspan, D.S., 2003, Transforming growth factor-β induces secretion of activated ADAMTS-2. J. Biol. Chem. 278: 19549–19557PubMedCrossRefGoogle Scholar
  76. Weil, D., Bernard, M., Combata, N., Wirtz, M.K., Hollister, D.W., Steinmann, B., Ramirez, F., 1988, Identification of a mutation that causes exon-skipping during collagen pre-mRNA splicing in an Ehlers-Danlos syndrome variant. J. Biol. Chem. 263: 8561–8564.PubMedGoogle Scholar
  77. Yamaji, N., Nishimura, K., Abe, K., Ohara, O., Nagase, T., Nomura, N., inventors: Yamanouchi Pharmaceutical Co. Ltd., assignee. Novel Metalloprotease Having Aggrecanase Activity. European Patent 00974894.8. 2000 Oct 11.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Daniel S. Greenspan
    • 1
  • Wei-Man Wang
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonUSA

Personalised recommendations