Skip to main content

Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty

  • Chapter
Numerical Methods in Finance

Abstract

We use in this chapter the viability/capturability approach for studying the problem of dynamic valuation and management of a portfolio with transaction costs in the framework of tychastic control systems (or dynamical games against nature) instead of stochastic control systems. Indeed, the very definition of the guaranteed valuation set can be formulated directly in terms of guaranteed viable-capture basin of a dynamical game.

Hence, we shall “compute” the guaranteed viable-capture basin and find a formula for the valuation function involving an underlying criterion, use the tangential properties of such basins for proving that the valuation function is a solution to Hamilton-Jacobi-Isaacs partial differential equations. We then derive a dynamical feedback providing an adjustment law regulating the evolution of the portfolios obeying viability constraints until it achieves the given objective in finite time. We shall show that the Pujal—Saint-Pierre viability/capturability algorithm applied to this specific case provides both the valuation function and the associated portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubin, J.-P. (1981). Contingent derivatives of set-valued maps and existence of Solutions to nonlinear inclusions and differential inclusions. In: L. Nachbin ed., Advances in Mathematics, Supplementary studies, pp. 160–232.

    Google Scholar 

  • Aubin, J.-P. (1986). A viability approach to Lyapunov's second method. In: A. Kurzhanski and K. Sigmund (eds.), Dynamical Systems, Lectures Notes in Economics and Math. Systems, 287:31–38. Springer-Verlag.

    Google Scholar 

  • Aubin, J.-P. (1991). Viability Theory. Birkhäuser, Boston, Basel, Berlin.

    Google Scholar 

  • Aubin, J.-P. (1997). Dynamic Economic Theory: A Viability Approach. Springer-Verlag.

    Google Scholar 

  • Aubin, J.-P. (1999). Impulse Differential Inclusions and Hybrid Systems: A Viability Approach. Lecture Notes, University of California at Berkeley.

    Google Scholar 

  • Aubin, J.-P. (2000a). Lyapunov Functions for Impulse and Hybrid Control Systems. Proceedings of the CDC 2000 Conference.

    Google Scholar 

  • Aubin, J.-P. (2000b). Optimal impulse control problems and quasi-variational inequalities thirty years later: a viability approach. In: Contrôle optimal et EDP: Innovations et Applications. IOS Press.

    Google Scholar 

  • Aubin, J.-P., Bayen, A., Bonneuil, N., and Saint-Pierre, P. (2005). Viability, Control and Games: Regulation of Complex Evolutionary Systems Under Uncertainty and Viability Constraints. Springer-Verlag.

    Google Scholar 

  • Aubin, J.-P. and Catte, F. (2002). Fixed-Point and Algebraic Properties of Viability Kernels and Capture Basins of Sets. Set-Valued Analysis, 10:379–416.

    Article  MathSciNet  Google Scholar 

  • Aubin, J.-P. and Cellina, A. (1984). Differential Inclusions. Springer-Verlag.

    Google Scholar 

  • Aubin, J.-P. and Da Prato, G. (1995). Stochastic Nagumo's viability theorem. Stochastic Analysis and Applications, 13:1–11.

    MathSciNet  Google Scholar 

  • Aubin, J.-P. and Da Prato, G. (1998). The viability theorem for stochastic differential inclusions. Stochastic Analysis and Applications, 16:1–15

    MathSciNet  Google Scholar 

  • Aubin, J.-P., Da Prato, G., and Frankowska, H. (2000). Stochastic Invariance for differential inclusions. Set-Valued Analysis, 8:181–201.

    Article  MathSciNet  Google Scholar 

  • Aubin, J.-P. and Dordan, O. (1996). Fuzzy Systems, viability theory and toll sets. In: H. Nguyen (ed.), Handbook of Fuzzy Systems, Modeling and Control, pp. 461–488. Kluwer.

    Google Scholar 

  • Aubin, J.-P. and Doss, H. (2001). Characterization of stochastic viability of any nonsmotth set involving its generalized contingent curvature. Stochastic Analysis and Applications, 25:951–981.

    Google Scholar 

  • Aubin, J.-P. and Frankowska, H. (1990). Set-Valued Analysis. Birkhäuser.

    Google Scholar 

  • Aubin, J.-P. and Frankowska, H. (1996). The viability kernel algorithm for Computing value functions of infinite horizon optimal control problems. J. Math. Anal. Appl, 201:555–576.

    Article  MathSciNet  Google Scholar 

  • Aubin, J.-P. and Haddad, G. (2001a). Cadenced runs of impulse and hybrid control Systems. International Journal Robust and Nonlinear Control, 11:401–415.

    Article  MathSciNet  Google Scholar 

  • Aubin, J.-P. and Haddad, G. (2001b). Path-dependent impulse and hybrid Systems. In: Di Benedetto and Sangiovanni-Vincentelli (eds.), Hybrid Systems: Computation and Control, Proceedings of the HSCC 2001 Conference, LNCS 2034, pp. 119–132. Springer-Verlag.

    Google Scholar 

  • Aubin, J.-P. and Haddad, G. (2002). History (path) dependent optimal control and portfolio valuation and management. Journla of Positivity, 6:331–358.

    Article  MathSciNet  Google Scholar 

  • Aubin, J.-P., Lygeros, J., Quincampoix, M., Sastry, S., and Seube, N. (2002). Impulse differential inclusions: A viability approach to hybrid Systems. IEEE Transactions on Automatic Control, 47:2–20.

    Article  MathSciNet  Google Scholar 

  • Bardi, M. and Capuzzo Dolcetta, I. (1998). Optimal Control and Viscosity Solutions to Hamilton-Jacobi-Bellman Equations. Birkhäuser.

    Google Scholar 

  • Bardi, M. and Goatin, P. (1997). A Dirichlet Type Problem for Nonlinear Degenerate Elliptic Equations Arinsing in Time-Optimal Stochastic Control. Preprint SISSA 50/97.

    Google Scholar 

  • Bardi, M. and Goatin, P. (1998). Invariant sets for controlled degenerate diffusions: a viscosity solution approach. Preprint Padova 2/98.

    Google Scholar 

  • Bensoussan, A. and Lions, J.-L. (1982). Contrôle impulsionnel et inéquations quasi-variationnelles. Dunod, Paris. (English translation: (1984) Impulse Control and Quasi-Variational Inequalities, Gauthier-Villars).

    Google Scholar 

  • Bensoussan, A. and Menaldi (1997). Hybrid control and dynamic programming. Dynamics of Continuous, Discrete and Impulse Systems, 3:395–442.

    MathSciNet  Google Scholar 

  • Bernhard, P. (2000a). Max-Plus algebra and mathematical fear in dynamic optimization. J. Set-Valued Analysis.

    Google Scholar 

  • Bernhard, P. (2000b). Une approche déterministe de l'évaluation des options. In: Optimal Control and Partial Differential Equations, IOS Press.

    Google Scholar 

  • Bernhard, P. (2000c). A Robust Control Approach to Option Pricing. Cambridge University Press.

    Google Scholar 

  • Bernhard, P. (2002). Robust control approach to Option pricing, including transaction costs. Annals of Dynamic Games

    Google Scholar 

  • Bjork, T. (1998). Arbitrage theory in continuous time. Oxford University Press.

    Google Scholar 

  • Buckdahn, R., Quincampoix, M., and Rascanu, A. (1997). Propriétés de viabilité pour des équations différentielles stochastiques rétrogrades et applications à des équations auxdérivées partielles. Comptes-Rendus de l'Académie des Sciences, 235:1159–1162.

    Article  MathSciNet  Google Scholar 

  • Buckdahn, R., Quincampoix, M., and Rascanu, A. (1998a). Stochastic Viability for Backward Stochastic Differential Equations and Applications to Partial Differential Equations, Un. Bretagne Occidentale, 01-1998.

    Google Scholar 

  • Buckdahn, R., Peng, S., Quincampoix, M., and Rainer, C. (1998b). Existence of stochastic control under State constraints. Comptes-Rendus de l'Académie des Sciences, 327:17–22.

    Article  MathSciNet  Google Scholar 

  • Buckdahn, R., Cardaliaguet, P., and Quincampoix, M. (2000). A representation formula for the mean curvature motion, UBO 08-2000.

    Google Scholar 

  • Cardaliaguet, P. (1994). Domaines dicriminants en jeux différentiels. Thèse de l'Université de Paris-Dauphine.

    Google Scholar 

  • Cardaliaguet, P. (1996). A differential game with two players and one target. SIAM J. Control and Optimization, 34(4):1441–1460.

    Article  MATH  MathSciNet  Google Scholar 

  • Cardaliaguet, P. (2000). Introduction à la théorie des jeux différentiels. Lecture Notes, Université Paris-Dauphine.

    Google Scholar 

  • Cardaliaguet, P., Quincampoix, M., and Saint-Pierre, P. (1999). Setvalued numerical methods for optimal control and differential games. In: Stochastic and differential games. Theory and numerical methods, Annals of the International Society of Dynamical Games, pp. 177–247. Birkhäuser.

    Google Scholar 

  • Cox, J. and Rubinstein, M. (1985). Options Market. Prentice Hall.

    Google Scholar 

  • Da Prato, G. and Frankowska, H. (1994). A stochastic Filippov theorem. Stochastic Calculus, 12:409–426.

    Google Scholar 

  • Da Prato, G. and Frankowska, H. (2001). Stochastic viability for compact sets in terms of the distance function. Dynamics Systems Appl., 10:177–184.

    Google Scholar 

  • Da Prato, G. and Frankowska, H. (2004). Invariance of stochastic control Systems with deterministic arguments. J. Differential Equations, 200:18–52.

    Article  MathSciNet  Google Scholar 

  • Doss, H. (1977). Liens entre équations différentielles stochastiques et ordinaires. Annales de l'Institute Henri Poincaré, Calcul des Probabilités et Statistique, 23:99–125.

    MathSciNet  Google Scholar 

  • Filipovic, D. (1999). Invariant manifolds for weak Solutions to stochastic equations. Preprint.

    Google Scholar 

  • Frankowska, H. (1989). Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations. Applied Mathematics and Optimization, 19:291–311.

    Article  MATH  MathSciNet  Google Scholar 

  • Frankowska, H. (1989). Hamilton-Jacobi equation: viscosity Solutions and generalized gradients. J. of Math. Analysis and Appl. 141:21–26.

    Article  MATH  MathSciNet  Google Scholar 

  • Frankowska, H. (1991). Lower semicontinuous Solutions to Hamilton-Jacobi-Bellman equations. In: Proceedings of 30th CDC Conference, IEEE, Brighton.

    Google Scholar 

  • Frankowska, H. (1993). Lower semicontinuous Solutions of Hamilton-Jacobi-Bellman equation. SIAM J. on Control and Optimization.

    Google Scholar 

  • Gautier, S. and Thibault, L. (1993). Viability for constrained stochastic differential equations. Differential Integral Equations, 6:1395–1414.

    MathSciNet  Google Scholar 

  • Haddad, G. (1981a). Monotone trajectories of differential inclusions with memory. Isr. J. Math., 39:83–100.

    MATH  MathSciNet  Google Scholar 

  • Haddad, G. (1981b). Monotone viable trajectories for functional differential inclusions. J. Diff. Eq., 42:1–24.

    Article  MATH  MathSciNet  Google Scholar 

  • Haddad, G. (1981c). Topological properties of the set of Solutions for functional differential differential inclusions. Nonlinear Anal. Theory, Meth. Appl., 5:1349–1366.

    Article  MATH  MathSciNet  Google Scholar 

  • Jachimiak, W. (1996). A note on invariance for semilinear differential equations. Bull. Pol. Acad. Sc., 44:179–183.

    Google Scholar 

  • Jachimiak, W. (1998). Stochastic invariance in infinite dimension. Preprint.

    Google Scholar 

  • Kisielewicz, M. (1995). Viability theorem for stochastic inclusions. Discussiones Mathematicae, Differential Inclusions, 15:61–74.

    MathSciNet  Google Scholar 

  • Milian, A. (1995). Stocastic viability and a comparison theorem. Colloq. Math., 68:297–316.

    MATH  MathSciNet  Google Scholar 

  • Milian, A. (1997). Invariance for stochastic equations with regular coefficients. Stochastic Anal. Appl., 15:91–101.

    MATH  MathSciNet  Google Scholar 

  • Milian, A. (1998). Comparison theorems for stochastic evolution equations. Preprint.

    Google Scholar 

  • Olsder, G.J. (1999). Control-theoretic thoughts on option pricing. Preprint.

    Google Scholar 

  • Pujal, D. (2000). Valuation et gestion dynamiques de portefeuilles, Thèse de l'Université de Paris-Dauphine.

    Google Scholar 

  • Pujal, D. and Saint-Pierre, P. (2001). L'algorithme du bassin de capture appliqué pour évaluer des options européennes, américaines ou exotiques. Preprint.

    Google Scholar 

  • Quincampoix, M. (1992). Differential inclusions and target problems. SIAM J. Control and Optimization, 30:324–335.

    Article  MATH  MathSciNet  Google Scholar 

  • Rockafellar, R.T. and Wets, R. (1997). Variational Analysis. Springer-Verlag.

    Google Scholar 

  • Runggaldier, W.J. (2000). Adaptive and robust control peocedures for risk minimization under uncertainty. In: Optimal Control and Partial Differential Equations, pp. 511–520. IOS Press.

    Google Scholar 

  • Saint-Pierre, P. (1994). Approximation of the viability kernel. Applied Mathematics and Optimisation, 29:187–209.

    Article  MATH  MathSciNet  Google Scholar 

  • Saint-Pierre, P. (2005). Approximation of capture basins for hybrid systems. Preprint.

    Google Scholar 

  • Soner, H.M., Shreve, S.E., and Cvitanic, J. (1995). There is no trivial hedging for Option pricing with transaction costs. The Annals of Probability, 5:327–355.

    MathSciNet  Google Scholar 

  • Soner, H.M. and Touzi, N. (1998). Super-replication under Gamma constraints. SIAM J. Control and Opt., 39:73–96.

    Article  MathSciNet  Google Scholar 

  • Soner, H.M. and Touzi, N. (2000). Dynamic programming for a class of control problems. Preprint.

    Google Scholar 

  • Soner, H.M. and Touzi, N. (2005). Stochastic target problems, dynamical programming and viscosity Solutions. Preprint.

    Google Scholar 

  • Tessitore, G. and Zabczyk, J. (1998). Comments on transition semigroups and stochastic invariance. Preprint.

    Google Scholar 

  • Zabczyk, J. (1973). Optimal control by means of switching. Studia Matematica, 65:161–171.

    MathSciNet  Google Scholar 

  • Zabczyk, J. (1992). Mathematical Control Theory: An Introduction. Birkhäuser.

    Google Scholar 

  • Zabczyk, J. (1996). Chance and decision: stochastic control in discrete time. Quaderni, Scuola Normale di Pisa.

    Google Scholar 

  • Zabczyk, J. (1999). Stochastic invariance and consistency of financial models. Preprint Scuola Normale di Pisa.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Aubin, JP., Pujal, D., Saint-Pierre, P. (2005). Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty. In: Breton, M., Ben-Ameur, H. (eds) Numerical Methods in Finance. Springer, Boston, MA. https://doi.org/10.1007/0-387-25118-9_3

Download citation

Publish with us

Policies and ethics