Skip to main content

Other Types of Solid-State Random Lasers

  • Chapter
  • 911 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 105))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.F. Zolin, A.A. Lichmanov, and N.P. Soshchin, Abstracts of Reports to the First International Conference on Chemistry and Technology of Luminophores, Institute of Luminophores: Stavropol (1988).

    Google Scholar 

  2. V.F. Zolin, The nature of plaser-powdered laser, J. Alloys Compounds, 300–301: 214–217 (2000).

    Article  Google Scholar 

  3. V.M. Markushev, V.F. Zolin, and Ch.M. Briskina, Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders, Sov. J. Quantum Electron., 16: 281–283 (1986).

    Article  ADS  Google Scholar 

  4. V.M. Markushev, N.È. Ter-Gabriélyan, Ch.M. Briskina, V.R. Belan, and V.F. Zolin, Stimulated emission kinetics of neodymium powder lasers, Sov. J. Quantum Electron., 20: 772–777 (1990).

    Article  ADS  Google Scholar 

  5. G. Williams, B. Bayram, S.C. Rand, T. Hinklin, and R.M. Laine, Laser action in strongly scattering rare-earth-doped dielecric nanophosphors, Phys. Rev. A, 65: 013807 (2001).

    Article  ADS  Google Scholar 

  6. M.A. Noginov, N. Noginova, S.U. Egarievwe, H.J. Caulfield, C. Cochrane, J.C. Wang, M.R. Kokta, and J. Paitz, Study of the pumping regimes in Ti-sapphire and Nd0.5La0.5Al3(BO3)4 powders, Opt. Mater., 10: 297–303 (1998).

    Article  Google Scholar 

  7. D.S. Wiersma, M.P. van Albada, and A. Lagendijk, Coherent backscattering of light from amplifying random media, Phys. Rev. Lett., 75: 1739–1742 (1995).

    Article  ADS  Google Scholar 

  8. D.S. Wiersma and A. Lagendijk, Light diffusion with gain and random lasers, Phys. Rev. E, 54: 4256–4265 (1996).

    Article  ADS  Google Scholar 

  9. D.S. Wiersma and A. Lagendijk, Interference effects in multiple light scattering with gain, Physica A, 241: 82–88 (1997).

    Article  ADS  Google Scholar 

  10. T.T. Basiev and S.B. Mirov, Room Temperature Color Center Lasers, Laser Science and Technology Book Series, An International Handbook, Vol. 16, Gordon and Breach Science/Harwood Academic (1995), pp. 1–160.

    Google Scholar 

  11. M.A. Noginov, N.E. Noginova, S.U. Egarievwe, H.J. Caulfield, P. Venkateswarlu, A. Williams, and S.B. Mirov, Color-center powder laser: The effect of pulverization on color-center characteristics, J. Opt. Soc. Am. B, 14, 2153–2160 (1997).

    Article  ADS  Google Scholar 

  12. T.T. Basiev, F.A. Vakhidov, Yu.K. Voron’ko, P.G. Zverev, V.A. Konyushkin, S.B. Mirov, Yu.B. Orlovsky, and V.V. Osiko, Optical and nonlinear characteristics of color centers in LiF crystals and their practical applications. In Proceedings of IVth Conference on Tunable Lasers, V.P. Chebotaev, ed., Novosibirsk, USSR, December (1983), pp. 77–82.

    Google Scholar 

  13. T.T. Basiev, S.B. Mirov, and V.B. Ter-Mikirtychev, Two-step photoionization and photophysics of color centers in LiF crystals, SPIE Proceedings, 1839: 292 (1992).

    Google Scholar 

  14. J. Nahum, Optical properties and mechanism of formation of some F aggregate centers in LiF, Phys. Rev., 158: 814–825 (1967).

    Article  ADS  Google Scholar 

  15. L. Bosi, C. Bussolati, and C.G. Spin, Life-time of the first excited state of the F +2 center in LiF, Phys. Lett., 32A: 159–160 (1970).

    ADS  Google Scholar 

  16. I.A. Parfianovich, V.M. Hulugurov, B.D. Lobanov, and N.T. Maximova, Luminescence and stimulated emission of color centers in LiF, Bull. Acad. Sci. USSR, Phys. Ser., 43: 20–27 (1979).

    Google Scholar 

  17. T.T. Basiev, S.B. Mirov, A.N. Stepanov, and A.M. Shirokov, N-absorption band increasing in γ-irradiated LiF crystals under plastic deformation and its polarization properties, Zhurnal Prikladnoi Spectroscopii, 45: 505–509, Russian (1986).

    Google Scholar 

  18. L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, and W.P. Krupke, Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quantum Electron., 32: 885–895 (1996).

    Article  ADS  Google Scholar 

  19. I.T. Sorokina, Mid-infrared crystalline solid-state lasers. In Solid-State Mid-IR Laser Sources, Springer: Berlin (2003), pp. 255–348

    Google Scholar 

  20. I.T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. Schaffers, Broadly tunable compact continuous-wave Cr2+:ZnS laser, Opt. Lett., 27: 1040–1042 (2002).

    Article  ADS  Google Scholar 

  21. I.T. Sorokina, E. Sorokin, V.G. Shcherbitsky, N.V. Kuleshov, G. Zhu, A. Frantz, and M.A. Noginov, Room-temperature lasing in nanocrystalline Cr2+:ZnSe random laser. In Technical Digest: Advanced Solid-State Photonics, Nineteenth Topical Meeting and Tabletop Exhibit Paper # WB14, ISBN # 1-55752-764-4 (2004).

    Google Scholar 

  22. I.T. Sorokina, E. Sorokin, V. Shcherbitsky, N.V. Kuleshov, G. Zhu, A. Frantz, and M.A. Noginov, First mid-infrared eye-safe random lasers based on Cr2+:ZnS and Cr2+:ZnSe. In International Quantum Electronics Conference, paper #IThG22, CD ROM 2004 CLEO/IQEC Technical Digest, ISBN # 1-55752-770-9 (2004).

    Google Scholar 

  23. N.È. Ter-Gabriélyan, V.M. Markushev, V.R. Belan, Ch.M. Briskina, O.V. Dimitrova, V.F. Zolin, and A.V. Lavrov, Stimulated radiation emitted by lithium neodymium tertaphosphate LiNd(PO3)4 and neodymium pentaphosphate NdP5O14 powders, Sov. J. Quantum Electron, 21, 840–841 (1991).

    Article  ADS  Google Scholar 

  24. M.A. Noginov, G. Zhu, A. Frantz, J. Novak, S. Williams, and I. Fowlkes, Dependence of the NdSc3(BO3)4 random laser parameters on the particle size, JOSA B, 21: 191–200 (2004).

    Article  ADS  Google Scholar 

  25. F. Auzel, S. Hubert, and D. Meichenin, Very low threshold CW excitation of superfluorescence at 2.72µm in Er3+, Europhys. Lett., 7: 459–462 (1988).

    Article  ADS  Google Scholar 

  26. F. Auzel, Properties of highly populated excited states in solids: Superfluorescence, hot luminescence, excited state absorption. In Optical Properties of Excited States in Solids, B. DiBartolo, ed., Plenum: New York (1992), pp. 305–347.

    Google Scholar 

  27. R.H. Dicke, Coherence in spontaneous radiation process, Phys. Rev., 93: 99–110 (1954).

    Article  MATH  ADS  Google Scholar 

  28. T. Waite, Size-dependent spontaneous energy loss in lasers due to self-stimulated emission, J. Appl. Phys., 35: 1680–1682 (1964).

    Article  ADS  Google Scholar 

  29. R. Bonifacio and L.A. Lugiato, Cooperative radiation processes in two-level systems: Superfluorescence, Phys Rev. A, 11: 1507–1521 (1975).

    Article  ADS  Google Scholar 

  30. H.M. Gibbs, Q.H.F. Vrehen, and H.M.J. Hikspoors, Single-pulse superfluorescence in cesium, Phys. Rev. Lett., 39: 547–550 (1977).

    Article  ADS  Google Scholar 

  31. J.C. MacGillivray, and M.S. Feld, Limits of superradiance as a process of achieving short pulses of high energy, Phys. Rev. A, 23: 1334–1349 (1981).

    Article  ADS  Google Scholar 

  32. A.V. Andreev and P.V. Polevoy, Superradiance of two-component media, Quantum Opt., 6: 57–72 (1994).

    Article  ADS  Google Scholar 

  33. F.T. Arecchi and E. Courtens, Cooperative phenomena in resonant electromagnetic propagation, Phys. Rev. A, 2: 1730–1737 (1970).

    Article  ADS  Google Scholar 

  34. A.Yu. Zyuzin, Superfluorescence of photonic paint, J. Exper. Theor. Phys., 86: 445–449 (1998).

    Article  ADS  Google Scholar 

  35. T.V. Shahbazyan, M.E. Raikh, and Z.V. Vardeny, Mesoscopic cooperative emission from a disordered system, Phys. Rev. B, 61: 13266–13276 (2000).

    Article  ADS  Google Scholar 

  36. S.V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z.V. Vardeny, Cooperative emission in π-conjugated polymer thin films, Phys. Rev. Lett., 78: 729–732 (1997).

    Article  ADS  Google Scholar 

  37. F. Hide, B.J. Schwartz, M.A. Días-García, and A.J. Heeger, Conjugated polymers as solid-state laser materials, Synth. Metals, 91: 35–40 (1997).

    Article  Google Scholar 

  38. M. Shukri and R.L. Armstrong, Coherent, directional, laserlike emission from random gain media, Appl. Opt., 39: 4300–4305 (2000).

    Article  ADS  Google Scholar 

  39. F. Auzel and P. Goldner, Coherent light sources with powder: Stimulated amplification versus super-radiance, J Alloys Compounds, 300–301: 11–17 (2000).

    Article  Google Scholar 

  40. S. Hubert, D. Meichenin, and F. Auzel, Thermal behaviour of low temperature coherent emission in LiYF4:Er3+, J. Lumin, 45: 434–436 (1990).

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Other Types of Solid-State Random Lasers. In: Solid-State Random Lasers. Springer Series in Optical Sciences, vol 105. Springer, New York, NY. https://doi.org/10.1007/0-387-25105-7_9

Download citation

Publish with us

Policies and ethics