Skip to main content

Neodymium Random Lasers: Experimental Studies of Stimulated Emission

  • Chapter
Solid-State Random Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 105))

  • 876 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.M. Markushev, V.F. Zolin, and Ch.M. Briskina, Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders, Sov. J. Quantum Electron., 16: 281–283 (1986).

    Article  ADS  Google Scholar 

  2. V.M. Markushev, V.F. Zolin, and Ch.M. Briskina, Poroshkovyi Lazer (Powder Laser) Zhurnal Prikladnoy Spektroskopii, 45: 847–850 (1986) Russian.

    Google Scholar 

  3. V.F. Zolin, private communication.

    Google Scholar 

  4. V.F. Zolin, The nature of plaser-powdered laser, J. Alloys Compounds, 300–301: 214–217 (2000).

    Article  Google Scholar 

  5. V.S. Letokhov, Stimulated emission of an ensemble of scattering particles with negative absorption [ZhETF Pis’ma, 5: 262–265 Russian] JETP Lett., 5: 212–215 (1967).

    ADS  Google Scholar 

  6. V.S. Letokhov, Generation of light by a scattering medium with negative resonance absorption [Zh. Exp. and Teor. Fiz., 53: 1442–14452 Russian] Sov. Phys. JETP, 26: 835–840 (1968).

    ADS  Google Scholar 

  7. V.S. Letokhov, Stimulated radio emission of the interstellar medium [Pis’ma Zh. Eksp. i Teor. Fiz., 4: 477–481 (1966) Russian] JETP Lett., 4: 321–323 (1966).

    ADS  Google Scholar 

  8. N.N. Lavrinovich and V.S. Letokhov, The possibility of the laser effect in stellar atmospheres [Zh. Eksp. i Teor. Fiz., 67: 1609–1620 (1974) Russian] Sov. Phys. JETP, 40: 800–805 (1975).

    ADS  Google Scholar 

  9. V.S. Letokhov, Noncoherent feedback in space masers and stellar lasers. In Amazing Light, A Volume Dedicated to Charles Hard Townes on His 80th Birthday, R.Y. Chiao, ed., Springer-Verlag: New York (1996), p. 409.

    Google Scholar 

  10. V.M. Markushev, N.È. Ter-Gabriélyan, Ch.M. Briskina, V.R. Belan, and V.F. Zolin, Stimulated emission kinetics of neodymium powder lasers, Sov. J. Quantum Electron., 20: 772–777 (1990).

    Article  ADS  Google Scholar 

  11. N.È. Ter-Gabriélyan, V.M. Markushev, V.R. Belan, Ch.M. Briskina, and V.F. Zolin, Stimulated emission spectra of powders of double sodium and lanthanum tetramolybdate, Sov. J. Quantum Electron., 21: 32–33 (1991).

    Article  ADS  Google Scholar 

  12. N.È. Ter-Gabriélyan, V.M. Markushev, V.R. Belan, Ch.M. Briskina, O.V. Dimitrova, V.F. Zolin, and A.V. Lavrov, Stimulated radiation emitted by lithium neodymium tertaphosphate LiNd(PO3)4 and neodymium pentaphosphate NdP5O14 powders, Sov. J. Quantum Electron., 21: 840–841 (1991).

    Article  ADS  Google Scholar 

  13. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometic crystals and powders, J. Opt. Soc. Am. B, 10: 2358–2363 (1993).

    Article  ADS  Google Scholar 

  14. M.A. Noginov, N.E. Noginova, H.J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, Short-pulsed stimulated emission in the powders of NdAl3(BO3)4, NdSc3(BO3)4, and Nd:Sr5(PO4)3F laser crystals, J. Opt. Soc. Am. B, 13: 2024–2033 (1996). M.A. Noginov, N.E. Noginova, H.J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, Stimulated emission without cavity in powders and single crystals of Nd doped materials. In OSA Trends in Optics and Photonics on Advanced Solid State Lasers, Vol. 1, S.A. Payne and C.R. Pollock, eds. Optical Society of America: Washington, DC (1996), pp. 585–590.

    Article  ADS  Google Scholar 

  15. R.C. Powell, Physics of Solid-State Laser Materials, Springer-Verlag: New York (1998).

    Google Scholar 

  16. M. Bahoura, N. Noginova, K.J. Morris, G. Zhu, S. Williams, J. Novak, I. Fowlkes, A. Frantz, and M.A. Noginov, Threshold conditions for a random laser mode. In Proceedings of SPIE Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Vol. 4970, Y.Y. Kalisky, ed. SPIE: Bellingham, WA, pp. 118–127.

    Google Scholar 

  17. A.A. Kaminskii, Cystalline Lasers: Physical Processes and Operating Schemes, CRC Press: Boca Raton, FL (1996).

    Google Scholar 

  18. M.A. Noginov, S.U. Egarievwe, N. Noginova, H.J. Caulfield, and J.C. Wang, Interferometric studies in a powder laser, Opt. Mater., 12: 127–134 (1999).

    Article  Google Scholar 

  19. M.A. Noginov, N.E. Noginova, S.U. Egarievwe, H.J. Caulfield, P. Venkateswarlu, A. Williams, and S.B. Mirov, Color-center powder laser: The effect of pulverization on color-center characteristics, J. Opt. Soc. Am. B, 14: 2153–2160 (1997).

    Article  ADS  Google Scholar 

  20. H. Cao, Y.G. Zhao, H.C. Ong, S.T. Ho, J.Y. Dai, J.Y. Wu, and R.P.H. Chang, Ultraviolet lasing in resonators formed by scattering in semiconducor polycrystalline films, Appl. Phys. Lett., 73: 3656–3658 (1998).

    Article  ADS  Google Scholar 

  21. H. Cao, J.Y. Xu, Y. Ling, S.-H. Chang, S.T. Ho, E.W. Seelig, X. Liu, and R.P.H. Chang, Random lasers with coherent feedback, Photonic Crystals and Light Localization in the 21st Century, C.M. Soukoulis, ed., NATO Science Series, Series C: Mathematical and Physical Sciences, Vol. 563, Kluwer Academic: Boston (2001).

    Google Scholar 

  22. H. Cao, Random lasers with coherent feedback. In Optical Properties of Nanostructured Random Media, V.M. Shalaev, ed., Topics in Applied Physics, Vol. 82, Springer-Verlag, New York (2002).

    Google Scholar 

  23. M. Shukri and R.L. Armstrong, Coherent, directional, laserlike emission from random gain media, Appl. Opt., 39: 4300–4305 (2000).

    Article  ADS  Google Scholar 

  24. M.B. van der Mark, M.P. van Albada, and A. Lagendijk, Light scattering in strongly scattering media: Multiple scattering and weak localization, Phys. Rev. B, 37: 3575–3592 (1988).

    Article  ADS  Google Scholar 

  25. E. Akkermans, P.E. Wolf, and R. Maynard, Coherent backscattering of light by disordered media: Analysis of the peak line shape, Phys. Rev. Lett., 56: 1471–1474 (1986).

    Article  ADS  Google Scholar 

  26. E. Akkermans, P.E. Wolf, R. Maynard, and G. Maret, Theoretical study of the coherent backscattering of light by disordered media, J. Phys. France, 49: 77–98 (1988).

    Article  ADS  Google Scholar 

  27. Ch.M. Briskina, V.M. Markushev, and N.È. Ter-Gabriélyan, Use of a model of coupled microcavities in the interpretation of experiments on powder lasers, Quantum Electron., 26: 923–927 (1996).

    Article  ADS  Google Scholar 

  28. S.N. Vetkina, V.P. Sirotkin, V.M. Markushev, and N.È. Ter-Gabriélyan, Powder lasers based on lanthanum niobate and lanthanum tantalate, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya, 56: 86–89 (1992) Russian.

    Google Scholar 

  29. A.A. Lichmanov, Ch.M. Briskina, V.M. Markushev, V.N. Lichmanova, and N.P. Soshchin, Degree of coherence and dimensions of the generation region of powder lasers, J. Appl. Spectroscopy, 65: 818–825 (1998).

    Article  ADS  Google Scholar 

  30. A.A. Lichmanov, Ch.M. Briskina, N.P. Soshchin, and V.F. Zolin, Lasing in powders and its use for data processing, Bull. Russian Acad. Sci. Phys. (Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya), 63: 922–926 (1999).

    Google Scholar 

  31. A.A. Lichmanov, Ch.M. Brickina, V.N. Lichmanova, N.P. Soshchin, and V.F. Zolin, Experimental studies of the lanthanide doped lasing powders (plasers). In Proceedings of the International Conference LASERS’98 (Tucson, AZ, December 7–11, 1998), pp. 725–731 (1999).

    Google Scholar 

  32. F. Auzel and P. Goldner, Coherent light sources with powder: Stimulated amplification versus super-radiance, J. Alloys Compounds, 300–301: 11–17 (2000).

    Article  Google Scholar 

  33. M.A. Noginov, N. Noginova, S.U. Egarievwe, H.J. Caulfield, C. Cochrane, J.C. Wang, M.R. Kokta, and J. Paitz, Study of the pumping regimes in Ti-sapphire and Nd0.5La0.5Al3(BO3)4 powders, Opt. Mater., 10: 297–303 (1998).

    Article  Google Scholar 

  34. M.A. Noginov, N. Noginova, S.U. Egarievwe, J.C. Wang, and H.J. Caulfield, New advances in solid-state powder lasers: The effects of external seeding and external mirror. In ICONO’98: Nonlinear Optical Phenomena and Coherent Optics in information Technologies, S.S. Chesnokov, V.P. Kandidov, and N.I. Koroteev, eds. Proceedings of SPIE 3733: (1999).

    Google Scholar 

  35. M. Bahoura, K.J. Morris, and M.A. Noginov, Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: Effect of the pumped spot size, Opt. Commun., 201: 405–412 (2002).

    Article  ADS  Google Scholar 

  36. M.A. Noginov, S.U. Egarievwe, N. Noginova, J.C. Wang, and H.J. Caulfield, Demonstration of a second harmonic powder laser, JOSA B, 15: 2854–2860 (1998).

    Article  ADS  Google Scholar 

  37. S.C. Rand, G. Williams, T. Hinklin, and R.M. Laine, Blue and infrared laser action in strongly scattering Nd:alumina nanopowders. In Conference on Lasers and Electo-Optics, OSA Technical Digest, Optical Socity of America: Washington, DC (1999), p. 483.

    Google Scholar 

  38. R.M. Laine, T. Hinklin, G. Williams, and S.C. Rand, Low-cost nanopowders for phosphor and laser applications by flame spray pyrolysis, Materi. Sci. Forum. 343: 500–510 (2000).

    Article  Google Scholar 

  39. B. Li, G. Williams, S.C. Rand, T. Hinklin, and R.M. Laine, Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina, Opt. Lett., 27: 394–396 (2002).

    Article  ADS  Google Scholar 

  40. G. Huber, Miniature neodymium lasers. In Current Topics in Materials Science, Vol. 4, E. Kaldis, ed., North-Holland: Amsterdam (1980), pp. 1–45.

    Google Scholar 

  41. G. Huber and H.G. Danielmeyer, NdP5O14 and NdAl3(BO3)4 lasers at 1.3μm, Appl. Phys., 18: 77–80 (1979).

    Article  ADS  Google Scholar 

  42. H.-D. Hattendorf, Dissertation zur Erlangung des Doktorgrades des Fachbereich Physik der Universität Hamburg, Hamburg, 1979.

    Google Scholar 

  43. J.-P. Mein, T. Jensen, and G. Huber, Spectroscopic properties and efficient diodepumped laser operation of neodymium-doped lanthanum scandium borate, IEEE J. Quant. Electron., 30: 913–917 (1994).

    Article  ADS  Google Scholar 

  44. V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M.A. Noginov, Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals, J. Opt. Soc. Am. B, 15: 1052–1060 (1998).

    Article  ADS  Google Scholar 

  45. J.-P. Meyn, Neodym-Lanthan-Scandium-Borat ein neus Material für miniaturisierte Festkörperlaser, Dissertation zur Erlangung des Doktorgrades des Fachbereich Physik der Universität Hamburg, Hamburg, 1994.

    Google Scholar 

  46. X.X. Zhang, P. Hong, G.B. Loutts, J. Lefaucheur, M. Bass, and B.H.T. Chai, Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 mm, Appl. Phys. Lett., 64: 3205–3207 (1994).

    Article  ADS  Google Scholar 

  47. X.X. Zhang, M. Bass, and B.H.T. Chai, Flashlamp pumped neodymium doped strontium flurapatite lasers. In OSA Proceedings on Advanced Solid State Lasers, Vol. 24, B.H.T. Chai and S.A. Payne, eds., Optical Society of America: Washington, DC (1995), pp. 150–152.

    Google Scholar 

  48. M.A. Noginov, G. Zhu, A. Frantz, J. Novak, S. Williams, and I. Fowlkes, Dependence of the NdSc3(BO3)4 random laser parameters on the particle size, JOSA B, 21: 191–200 (2004). M.A. Noginov, M. Bahoura, N. Noginova, G. Zhu, K.J. Morris, S. Williams, J. Novak, A. Frantz, and I. Fowlkes, Stimulated emission in scattering and composite dielectric media (random lasers): Effect of particle size, in Proceedings of SPIE Vol. 5218, Complex mediums IV: Beyond Linear Isotropic Dielectrics, Martin W. McCall and Graeme Dewar, eds. (SPIE, Bellingham, WA, 2003) pp. 124–139.

    Article  ADS  Google Scholar 

  49. M.A. Noginov, G. Zhu, and I. Fowlkes, Fiber-coupled random laser, International Quantum Electronics Conference, Paper #IFB14, CD ROM2004 CLE/IQEC Technical Digest, ISBN# 1-55752-770-9 (2004).

    Google Scholar 

  50. M.V. Klein and T.E. Furtak, OPTICS, 2d ed., Wiley: New York (1986).

    Google Scholar 

  51. J.W. Goodman, Statistical Optics, Wiley: New York (2000).

    Google Scholar 

  52. H. Cao, Y. Ling, and C.Q. Cao, Photon statistics of random lasers with resonant feedback, Phys. Rev. Lett., 86: 4524–4527 (2001).

    Article  ADS  Google Scholar 

  53. H. Cao, J.Y. Xu, E.W. Seeling, and R.P. Chang, Microlaser made of disordered media, Appl. Phys., Lett., 76, 2997–2999 (2000).

    Article  ADS  Google Scholar 

  54. R.H. Lehmberg and S.P. Obenschain, Use of spatial incoherence for uniform illumination of random fusion targets, Opt. Commun., 46: 27–31 (1983).

    Article  ADS  Google Scholar 

  55. D. Véron, H. Ayral, C. Gouédard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sautert, Optical spatial smoothing of Nd-glass laser beam, Opt. Commun., 65: 42–46 (1988).

    Article  ADS  Google Scholar 

  56. M. Bahoura, K.J. Morris, G. Zhu, and M.A. Noginov, Dependence of the neodymium random laser threshold on the diameter of the pumped spot, IEEE Journal of Quantum Electronics, 41: 677–685 (2005).

    Article  ADS  Google Scholar 

  57. M.P. van Albada and A. Lagendijk, Observation of weak localization of light in random medium, Phys. Rev. Lett., 55: 2693–2695 (1985).

    Article  Google Scholar 

  58. P.E. Wolf and G. Maret, Weak localization and coherent backscattering of photons in disordered media, Phys. Rev. Lett. 55: 2696–2699 (1985).

    Article  ADS  Google Scholar 

  59. H. Cao, J.Y. Xu, D.Z. Zhang, S.-H. Chan, S.T. Ho, E.W. Seelig, X. Liu, and R.P.H. Chang, Spatial confinement of laser light in active random media, Phys. Rev. Lett., 84: 5584–5587 (2000).

    Article  ADS  Google Scholar 

  60. B.M. Tissue, Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts, Chem. Mater., 10: 2837–2845 (1998).

    Article  Google Scholar 

  61. T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, Phosphor materials for cathode-ray tubes. In Advances in Electronics and Electron Physics, Vol. 79, Academic (1990).

    Google Scholar 

  62. D. Wolf, J. Wang, S.R. Phillpot, and H. Gleiter, Phonon-induced anomalous specific heat of a nanocrystalline model material by computer simulation, Phys. Rev. Lett., 74: 4686–4689 (1995).

    Article  ADS  Google Scholar 

  63. X.H. Wu, A. Yamilov, H. Woh, and H. Cao, Random lasing in closely packed resonant scatterers, J. Opt. Soc. Am. B, 21: 159–167 (2004).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Neodymium Random Lasers: Experimental Studies of Stimulated Emission. In: Solid-State Random Lasers. Springer Series in Optical Sciences, vol 105. Springer, New York, NY. https://doi.org/10.1007/0-387-25105-7_2

Download citation

Publish with us

Policies and ethics