Skip to main content

Functional Optical Coherence Tomography: Simultaneous in Vivo Imaging of Tissue Structure and Physiology

  • Conference paper
Biophotonics
  • 1238 Accesses

4. Conclusions

OCT is a rapidly developing imaging technology with many potential applications. Through different contrast enhancement mechanisms, F-OCTprovides clinically important physiological information that is not available in the structure image. Integration of F-OCT, such as Doppler OCT, PS-OCT, spectroscopic OCT, and SH-OCT, can greatly enhance potential applications of this technology. Given the noninvasive nature and exceptionally high spatial resolution and velocity sensitivity, functional OCT that can simultaneously provide tissue structure, blood perfusion, birefringence, and other physiological information has great potential for basic biomedical research and clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).

    Article  CAS  Google Scholar 

  2. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).

    Google Scholar 

  3. A. F. Fercher and C. K. Hizenberger, “Optical Coherence Tomography,” in Progress in Optics, E. Wolf, ed. (Elsevier, North-Holland, 2002), p. 215.

    Google Scholar 

  4. Z. Chen, “Functional optical coherence tomgoraphy,” in Frontiers in Biomedical Engineering, N. H. C. Hwang and S. L.-Y. Woo, eds. (Kluwer Academic/Plenum, New York, 2003), pp. 345–364.

    Google Scholar 

  5. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).

    CAS  Google Scholar 

  6. Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive Imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).

    CAS  Google Scholar 

  7. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).

    CAS  Google Scholar 

  8. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998).

    CAS  Google Scholar 

  9. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler,” Optics Express 1, 424 (1997).

    CAS  Google Scholar 

  10. Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler Tomography,” IEEE J. of Selected Topics in Quantum Electronics 5, 1134–1141 (1999).

    Article  CAS  Google Scholar 

  11. Z. Chen, T. E. Milner, X. J. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).

    Article  CAS  Google Scholar 

  12. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high veocity sensitivity,” Opt. Letts. 25, 114 (2000).

    CAS  Google Scholar 

  13. H. Ren, M. K. Breke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27,409–411 (2002).

    Google Scholar 

  14. U. Morgner, W. Drexler, X. D. Kartner, C. Piltris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).

    CAS  Google Scholar 

  15. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differntial absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A15, 2288 (1998).

    Google Scholar 

  16. M. D. Kulkarni and J. A. Izatt, Conference on Lasers and Electro Optics, Optical Society of America, 59–60,(1996).

    Google Scholar 

  17. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Amer. B 9, 903–908 (1992).

    Google Scholar 

  18. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3, 212–218 (1998).

    Google Scholar 

  19. H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, and Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and the Stokes vectors in human skin,” Opt. Lett. 27, 1702–1704 (2002).

    Google Scholar 

  20. C. E. Saxer, J. F. de Boer, B. Hyle Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).

    CAS  Google Scholar 

  21. J. Shuliang and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).

    Google Scholar 

  22. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, “Second harmonic optical coherence tomgoraphy,” Opt. Lett. 29, in press (2004).

    Google Scholar 

  23. J. S. Nelson, K. M. Kelly, Y. Zhao, and Z. Chen, “Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography,” Archives of Dermatology 137(6), 741–744 (2001).

    CAS  Google Scholar 

  24. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, C. Zhongping, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1200–1204 (1999).

    Article  Google Scholar 

  25. M.G. Ducros, J. F. De Boer, H. Huai-En Leah, J. S. Nelson, L. C. Chao, Z. Chen, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1159–1167(1999).

    Article  CAS  Google Scholar 

  26. A. F. Fercher, C. K. Kitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).

    Article  CAS  Google Scholar 

  27. Y. Zhao, Z. Chen, J. F. de Boer, and J. S. Nelson, “Optical frequency-domain reflectomertry (OFDR) using an integrated fiber tunable filter,” Photonic West, Proceedings of SPIE 3598, 56–60, San Jose (1999).

    Google Scholar 

  28. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).

    CAS  Google Scholar 

  29. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).

    CAS  Google Scholar 

  30. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. of Biomedical Optics 9, 47–74 (2004).

    Article  Google Scholar 

  31. Y. Wang, J. S. Nelson, and Z. Chen, “Optimal wavelength for ultrahigh resolution optical coherence tomography,” Opt. Express 11, 1411–1417 (2003).

    Article  Google Scholar 

  32. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).

    Google Scholar 

  33. V. Gusmeroli and M. Martnelli, “Distributed laser Doppler velocimeter,” Opt. Lett. 16, 1358–1360 (1991).

    Article  CAS  Google Scholar 

  34. Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. of Selected Topics in Quantum Electronics 7, 931–935 (2001).

    Article  CAS  Google Scholar 

  35. Z. Ding, Y. Zhao, H. Ren, S. J. Nelson, and Z. Chen, “Real-time phase resolved optical coherence tomography and optical Doppler tomography,” Opt. Express 10, 236–245 (2002).

    Google Scholar 

  36. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448–1450 (2000).

    CAS  Google Scholar 

  37. V. X. Yang, M. L. Gordon, S. Tang, N. E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dyhamic range Doppler optical coherence tomography (part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11, 2416–2424 (2003).

    Article  Google Scholar 

  38. J. F. De Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).

    Google Scholar 

  39. J. Shuliang, Y. Gang, and L. V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Appl. Opt. 39, 6318–6324 (2000).

    Article  Google Scholar 

  40. S. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. Chen, “Depth-resolved birefringence structure and differential optical axis orientation measurements using fiber-based polarization-sensitive optical coherence tomography,” Photonic West, Proceedings of SPIE 3598, in press, San Jose (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Chen, Z. (2005). Functional Optical Coherence Tomography: Simultaneous in Vivo Imaging of Tissue Structure and Physiology. In: Shen, X., Van Wijk, R. (eds) Biophotonics. Springer, Boston, MA . https://doi.org/10.1007/0-387-24996-6_5

Download citation

Publish with us

Policies and ethics