Skip to main content

How Two-Foot Molecular Motors May Walk

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 565))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Ali, M. Y., Uemura, S., Adachi, K., Itoh, H., Kinosita, K. Jr., and Ishiwata, S., 2002, Myosin V is a left-handed spiral motor on the right-handed actin helix, Nat. Struct. Biol. 9:464–467.

    Article  PubMed  CAS  Google Scholar 

  • Ali, M. Y., Homma, K., Iwane, A. H., Adachi, K., Itoh, H., Kinosita, K. Jr., Yanagida, T, and Ikebe, M., 2004, Unconstrained steps of myosin VI appear longest among known molecular motors, Biophys. J. 86, in press.

    Google Scholar 

  • Asbury, C. L., Fehr, A. N., and Block, S. M., 2003, Kinesin moves by an asymmetric hand-over-hand mechanism, Science 302:2130–2134.

    Article  PubMed  CAS  Google Scholar 

  • Bahloul, A., Chevreux, G., Wells, A. L., Martin, D., Nolt, J., Yang, Z., Chen, L.-Q., Potier, N., Dorsselaer, A. V., Rosenfeld, S., Houdusse, A., and Sweeney, H. L., 2004, The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc. Natl. Acad Sci. USA. 101:4787–4792.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, S., Walker, M., Wang, F. J., Sellers, R., White, H. D., Knight, P. J., and Trinick, J., 2002, The prepower stroke conformation of myosin V, J. Cell Biol. 159:983–991.

    Article  PubMed  CAS  Google Scholar 

  • Cheney, R. E., O’shea, M. K., Heuser, J. E., Coelho, M. V., Wolenski, J.S., Espreafico, E. M., Forscher, P., Larson, R. E., and Mooseker, M. S., 1993, Brain myosin-V is a two-headed unconventional myosin with motor activity, Cell 75:13–23.

    PubMed  CAS  Google Scholar 

  • Coureux, P.-D., Wells, A. L., Ménétrey, J., Yengo, C. M., Morris, C. A., Sweeney, H. L., and Houdusse, A., 2003, A structural state of the myosin V motor without bound nucleotide, Nature 425:419–423.

    Article  PubMed  CAS  Google Scholar 

  • Endow, S. A., and Barker, D. S., 2003, Processive and nonprocessive models of kinesin movement, Annu. Rev. Physiol. 65:161–175.

    Article  PubMed  CAS  Google Scholar 

  • Forkey, J. N., Quinlan, M. E., Shaw, M. A., Corrie, J. E. T., and Goldman, Y. E., 2003, Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization, Nature 422:399–404.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C, Popp, D., Gebhard, W., and Kabsch, W., 1990, Atomic model of the actin filament, Nature 347:44–49.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C, and Geeves, M. A., 2000, The structural basis of muscle contraction, Phil. Trans. R. Soc. B. 355:419–431.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C, Angert, I., Kull, F. J., Jahn, W., and Schroder, R. R., 2003, Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide, Nature 425:423–427.

    Article  PubMed  CAS  Google Scholar 

  • Homma, K., Yoshimura, M., Saito, J., Ikebe, R., and Ikebe, M., 2001, The core of the motor domain determines the direction of myosin movement, Nature 412: 831–834.

    Article  PubMed  CAS  Google Scholar 

  • Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Györgyi, A. G., and Cohen, C, 1999, Atomic structure of scallop myosin subfragment S1 complexed with MgADP: A novel conformation of the myosin head, Cell 97, 459–470.

    Article  PubMed  CAS  Google Scholar 

  • Houdusse, A., Szent-Györgyi, A. G., and Cohen, C, 2000, Three conformational states of scallop myosin S1, 2000, Proc. Natl. Acad. Sci. USA 97, 11238–11243.

    Article  PubMed  CAS  Google Scholar 

  • Howard, J., 1996, The movement of kinesin along microtubules, Annu. Rev. Physiol. 58:703–729.

    Article  PubMed  CAS  Google Scholar 

  • Hua, W., Chung, J., and Gelles, J., 2002, Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements, Science 295:844–848.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E., 1969, The mechanism of muscular contraction, Science 164:1356–1366.

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata, S., Kinosita, K. Jr., Yoshimura, H., and Ikegami, A., 1987, Rotational morions of myosin heads in myofibril studied by phosphorescence anisotropy decay measurements, J. Biol. Chem. 262:8314–8317.

    PubMed  CAS  Google Scholar 

  • Kinosita, K. Jr., Ishiwata, S., Yoshimura, H., Asai, H., and Ikegami, A., 1984, Submicrosecond and microsecond rotational motions of myosin head in solution and in myosin synthetic filaments as revealed by time-resolved optical anisotropy decay measurements, Biochem. 23:5963–5975.

    Article  CAS  Google Scholar 

  • Kinosita, K. Jr., Yasuda, R., Noji, H., Ishiwata, S., and Yoshida, M, 1998, F1-ATPase: a rotary motor made of a single molecule, Cell 93:21–24.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., Adachi, K., and Itoh, H., 2004, Rotation of F1-ATPase: how an ATP-driven molecular machine may work, Annu. Rev. Biophys. Biomol. Struct. 33:245–268.

    Article  PubMed  CAS  Google Scholar 

  • Kozielski, F., Sack, S., Marx, A., Thormählen, M., Schönbrunn, E., Biou, V., Thompson, A., Mandelkow, E.-M., and Mandelkow, E., 1997, The crystal structure of dimeric kinesin and implications for microtubule-dependent motility, Cell 91:985–994.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y, Brown, J. H., Reshetnikova, L., Blazsek, A., Farkas, L., Nyitray, L., and Cohen, C, 2003, Visualization of an unstable coiled coil from the scallop myosin rod, Nature 424:341–345.

    Article  PubMed  CAS  Google Scholar 

  • Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S., and Cheney, R. E., 1999, Myosin-V is a processive actin-based motor, Nature 400:590–593.

    Article  PubMed  CAS  Google Scholar 

  • Mehta, A., 2001, Myosin learns to walk, J. Cell Sci. 114:1981–1998.

    PubMed  CAS  Google Scholar 

  • Moore, J. R., Krementsova, E. B., Trybus, K. M., and Warshaw, D. M., 2001, Myosin V exhibits a high duty cycle and large unitary displacement, J. Cell Biol. 155:625–635.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, S., Homma, K., Komori, Y., Iwaki, M., Wazawa, T., Iwane, A. H., Saito, J., Ikebe, R., Katayama, E., Yanagida, T., and Ikebe, M., 2002, Class VI myosin moves processively along actin filaments backward with large steps, Biochem. Biophys. Res. Commun. 290:311–317.

    Article  PubMed  CAS  Google Scholar 

  • Nishizaka, T., Yagi, T., Tanaka, Y., and Ishiwata, S., 1993, Right-handed rotation of an actin filament in an in vitro motile system, Nature 361:269–271.

    Article  PubMed  CAS  Google Scholar 

  • Rice, S., Cui, Y., Sindelar, C, Naber, N., Matuska, M., Vale, R., and Cooke, R., 2003, Thermodynamic properties of the kinesin neck-region docking to the catalytic core, Biophys. J. 84:1844–1854.

    Article  PubMed  CAS  Google Scholar 

  • Rief, M., Rock, R. S., Mehta, A. D., Mooseker, M. S., Cheney, R. E., and Spudich, J. A., 2000, Myosin-V stepping kinetics: A molecular model for processivity, Proc. Natl. Acad. Sci. USA. 97:9482–9486.

    Article  PubMed  CAS  Google Scholar 

  • Rock, R. S., Rice, S E., Wells, A. L., Purcell, T. J., Spudich, J. A., and Sweeney, H. L., 2001, Myosin VI is a processive motor with a large step size, Proc. Natl. Acad. Sci. USA. 98:13655–13659.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, T., Amitani, I., Yokota, E., and Ando, T., 2000, Direct observation of processive movement by individual myosin V molecules, Biochem. Biophys. Res. Commun. 272:586–590.

    Article  PubMed  CAS  Google Scholar 

  • Sase, I., Miyata, H., Ishiwata, S., and Kinosita, K. Jr., 1997, Axial rotation of sliding actin filaments revealed by single-fluorophore imaging, Proc. Natl. Acad. Sci. USA. 94:5646–5650.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M., and Woehlke, G., 2003, Molecular motors, Nature 422:759–765.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Homma, K., Iwane, A. H., Katayama, E., Ikebe, R., Saito, J., Yanagida, T., and Ikebe, M., 2002, The motor domain determines the large step of myosin-V, Nature 415:192–195.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga, M., Kojima, H., Yokota, E., Orii, H., Nakamori, R., Katayama, E., Anson, M., Shimmen, T., and Oiwa, K., 2003, Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity, EMBO J. 22:1263–1272.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, S., and Ishiwata, S., 2003, Loading direction regulates the affinity of ADP for kinesin, Nat. Struct. Biol. 10:308–311.

    Article  PubMed  CAS  Google Scholar 

  • Vale, R. D., and Milligan, R. A., 2000, The way things move: looking under the hood of molecular motor proteins, Science 288:88–95.

    Article  PubMed  CAS  Google Scholar 

  • Vale, R. D., 2003, Myosin V motor proteins: marching stepwise towards a mechanism, J. Cell Biol., 163:445–450.

    Article  PubMed  CAS  Google Scholar 

  • Veigel, C, Wang, F., Bartoo, M. L., Sellers, J. R., and Molloy, J. E., 2002, The gated gait of the processive molecular motor, myosin V, Nat. Cell Biol. 4:59–65.

    Article  PubMed  CAS  Google Scholar 

  • Walker, M. L., Burgess, S. A., Sellers, J. R., Wang, F., Hammer, J. A., Trinick, J., and Knight, P. J., 2000, Two-headed binding of a processive myosin to F-actin, Nature 405:804–807.

    Article  PubMed  CAS  Google Scholar 

  • Wells, A. L., Lin, A. W., Chen, L.-Q., Safer, D., Cain, S. M., Hasson, T., Carragher, B. O., Milligan, R. A., and Sweeney, H. L., 1999, Myosin VI is an actin-based motor that moves backwards, Nature 401:505–508.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, R., Noji, H., Kinosita, K. Jr., and Yoshida, M., 1998, F1i-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps, Cell 93:1117–1124.

    Article  PubMed  CAS  Google Scholar 

  • Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., and Selvin, P. R., 2003, Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization, Science 300:2061–2065.

    Article  PubMed  CAS  Google Scholar 

  • Yildiz, A., Tomishige, M., Vale, R. D., and Selvin, P. R., 2004, Kinesin walks hand-over-hand, Science 303:676–678.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Kinosita, K., Yusuf Ali, M., Adachi, K., Shiroguchi, K., Itoh, H. (2005). How Two-Foot Molecular Motors May Walk. In: Sugi, H. (eds) Sliding Filament Mechanism in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 565. Springer, Boston, MA. https://doi.org/10.1007/0-387-24990-7_16

Download citation

  • DOI: https://doi.org/10.1007/0-387-24990-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24989-6

  • Online ISBN: 978-0-387-24990-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics