Skip to main content

Crystal Symmetry Viewed as Zeta Symmetry

  • Conference paper
Book cover Zeta Functions, Topology and Quantum Physics

Part of the book series: Developments in Mathematics ((DEVM,volume 14))

Abstract

In this paper we study two kinds of energy invariants — the Madelung constant and the screened Coulomb potential associated to a crystal lattice though the lattice zeta-function, which is manifested as the Epstein zeta-function. We take into account the lattice structure (crystal symmetry) in our study through the functional equation of the Epstein zeta-function (zeta symmetry).

The authors are supported by Grant-in-Aid for Scientific Research No. 14540051, 14540021 and 14005245 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. V. Atkinson, Abel summation of certain Dirichlet series, Quart. J. Math, Oxford Ser. 19 (1948), 59–64.

    Article  Google Scholar 

  2. P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365–373.

    MathSciNet  Google Scholar 

  3. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series IV, Trans. Amer. Math. Soc. 149 (1970), 179–185.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series VI, Trans. Amer. Math. Soc. 160 (1971), 157–167.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Bochner, Some properties of modular relations. Ann. of Math. (2) 53 (1951), 332–363.

    Article  MathSciNet  Google Scholar 

  6. J. M. Borwein and P. B. Borwein, Pi and the AGM: A study in analytic number theory and computational complexity, Wiley, 1987.

    Google Scholar 

  7. D. Borwein and J. M. Borwein, On some trigonometric and exponential lattice sums, J. Math. Analy. Appl. 188 (1994), 209–218.

    Article  MATH  Google Scholar 

  8. A. N. Chaba and R. K. Pathria, Evaluation of a class of lattice sums in arbitrary dimensions, J. Math. Phys. 16 (1975), 1457–1460.

    Article  MathSciNet  Google Scholar 

  9. A. N. Chaba and R. K. Pathria, Evaluation of a class of lattice sums using Poisson’s summation formula. II, J. Phys. A: Math. Gen. 9 (1976), 1411–1423.

    Article  MathSciNet  Google Scholar 

  10. A. N. Chaba and R. K. Pathria, Evaluation of a class of lattice sums using Poisson’s summation formula. III, ibid. 9 (1976), 1801–1810.

    Article  MathSciNet  Google Scholar 

  11. A. N. Chaba and R. K. Pathria, Evaluation of a class of lattice sums using Poisson’s summation formula. IV, ibid. 10 (1977), 1823–1831.

    Article  MathSciNet  Google Scholar 

  12. S. Chowla and A. Selberg, On Epstein’s zeta-function (I), Proc. Nat. Acad. Sci. USA 35 (1949), 371–374; Collected Papers of Atle Selberg I, Springer Verlag, 1989, 367–370. The Collected Papers of Sarvadaman Chowla II, CRM, 1999, 719–722.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann. Phys. (4) 64 (1921), 253–287.

    Article  Google Scholar 

  14. M. L. Glasser and I. J. Zucker, Lattice sums, Theoretical Chemistry: Advances and Perspectives, Vol. 5, ed. by D. Henderson, Academic Press 1980, 67–139.

    Google Scholar 

  15. G. L. Hall, Asymptotic properties of generalized Chaba and Pathria lattice sums, J. Math. Phys. 17 (1976), 259–260.

    Article  Google Scholar 

  16. A. Hautot, A new method for the evaluation of slowly convergent series, J. Math. Phys. 15 (1974), 1722–1727.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Hautot, New applications of Poisson’s summation formula, J. Phys. A: Math. Gen. 8 (1975), 853–862.

    Article  MathSciNet  Google Scholar 

  18. S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, Ramanujan’s Formula and Modular Forms, Number Theoretic Method-Future Trends, (ed. S. Kanemitsu and C. Jia) Kluwer Academic Publisher, Dordrecht, (2003), 159–212.

    Google Scholar 

  19. S. Kanemitsu, Y. Tanigawa and W. Zhang, On Bessel series expressions for some lattice sums, J. Northwest Univ.

    Google Scholar 

  20. S. Kanemitsu, Y. Tanigawa, H. Tsukada and M. Yoshimoto, On Bessel series expressions for some lattice sums II, J. Phis. A: Gen. Math. 37 (2004), 719–734.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Kanemitsu, Y. Tanigawa, H. Tsukada and M. Yoshimoto, Crystal symmetry viewed as zeta symmetry, II.

    Google Scholar 

  22. A. F. Lavrik, Functional equations with a parameter for zeta-functions (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 501–521; English translation in Math. USSR-Izv. 36 (1991), 519–540.

    MATH  Google Scholar 

  23. R. B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes Integrals, Cambridge University Press, 2001.

    Google Scholar 

  24. A. Selberg and S. Chowla, On Epstein’s zeta-function, J. Reine Angew, Math. 227 (1967), 86–110; Collected Papers of Atle Selberg I, Springer Verlag, 1989, 521–545; The Collected Papers of Sarvadaman Chowla II, CRM, 1999, 1101–1125.

    MATH  MathSciNet  Google Scholar 

  25. A. Terras, Bessel series expansion of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477–486.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Terras, The minima of quadratic forms and the behavior if Epstein and Dedekind zeta-functions, J. Number Theory 12 (1980), 258–272.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, II, Springer Verlag, New York-Berlin-Heidelberg, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Yukio Ueda on his seventieth birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Kanemitsu, S., Tanigawa, Y., Tsukada, H., Yoshimoto, M. (2005). Crystal Symmetry Viewed as Zeta Symmetry. In: Aoki, T., Kanemitsu, S., Nakahara, M., Ohno, Y. (eds) Zeta Functions, Topology and Quantum Physics. Developments in Mathematics, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-387-24981-8_7

Download citation

Publish with us

Policies and ethics