Skip to main content

Acrylamide Neurotoxicity: Neurological, Morhological and Molecular Endpoints in Animal Models

  • Conference paper
Chemistry and Safety of Acrylamide in Food

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 561))

Abstract

Acrylamide (AA) monomer is used in numerous chemical industries and is a contaminant in potato- and grain-based foods prepared at high temperatures. Although experimental animal studies have implicated carcinogenicity and reproductive toxicity as possible consequences of exposure, neurotoxicity is the only outcome identified by epidemiological studies of occupationally exposed human populations. Neurotoxicity in both humans and laboratory animals is characterized by ataxia and distal skeletal muscle weakness. Early neuropathological studies suggested that AA neurotoxicity was mediated by distal axon degeneration. However, more recent electrophysiological and quantitative morphometric analyses have identified nerve terminals as primary sites of AA action. A resulting defect in neurotransmitter release appears to be the pathophysiological basis of the developing neurotoxicity. Corresponding mechanistic research suggests that AA impairs release by adducting cysteine residues on functionally important presynaptic proteins. In this publication we provide an overview of recent advances in AA research. This includes a discussion of the cumulative nature of AA neurotoxicity and the putative sites and molecular mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelli L., Ferri G.-L., Astolfi M., Conte, B., Geppetti P., Parlani M., Dahl, D., Polak, J.M. and Maggi, C.A. 1991, Acrylamide-induced visceral neuropathy: evidence for the involvement of capsaicin-sensitive nerve to the rat urinary bladder. Neuroscience 41: 311–321.

    Article  CAS  Google Scholar 

  • Abou-Donia, M.B., Ibrahim S.M., Corcoran J.J., Lack L., Friedman, M.A. and Lapadula, D.M. 1993, Neurotoxicity of glycidamide, an acrylamide metabolite, following intraperitoneal injections in rats. J. Toxicol. Environ. Health 39: 447–464.

    CAS  Google Scholar 

  • Amaratunga, A., Leeman, S.E., Kosik, K.S. and Fine, R.E. 1995, Inhibition of kinesin synthesis in vivo inhibits the rapid transport of representative proteins for three transport vesicle classes into the axon. J. Neurochem. 64: 2374–2376.

    Article  CAS  Google Scholar 

  • Barber, D., Hunt, J.R., Ehrich, M., Lehning, E.J. and LoPachin, RM. 2001, Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. NeuroToxicology, 22:341–353.

    Article  CAS  Google Scholar 

  • Becalski, A., Lau, B., Lewis, D. and Seaman, S. 2002, Acrylamide in food: occurrence and sources. Presented at the Annual Meeting of AOAC International, September 26.

    Google Scholar 

  • Beckers, C.J.M., Block, M.R., Glick, B.S., Rothman, J.E and Balch, W.E. 1989, Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein. Nature 339: 397–398.

    Article  CAS  Google Scholar 

  • Bergmark, E., Calleman, C.J. and Costa, L.G. 1991, Formation of hemoglobin adducts of acrylamide and its epoxide metabolite glycidamide in the rat. Toxicol. Appl. Pharmacol. 111: 352–363.

    Article  CAS  Google Scholar 

  • Bergmark, E., Calleman, C.J., He, F. and Costa, L.G. 1993, Determination of hemoglobin adducts in humans occupationally exposed to acrylamide. Toxicol. Appl. Pharmacol. 120: 45–54.

    Article  CAS  Google Scholar 

  • Brat, D.J. and Brimijion, S. 1993, Acrylamide and glycidamide impair neurite outgrowth in differentiating N1E.115 neuroblastoma without disturbing rapid bi-directional transport of organelles observed by video microscopy. J. Neurochem. 60: 2145–2152.

    CAS  Google Scholar 

  • Brimijion, W.S. and Hammond, P.I. 1985, Acrylamide neuropathy in the rat: effects on energy metabolism in sciatic nerve. Mayo Clin. Proc. 60: 3–8.

    Google Scholar 

  • Bull, R.J., Robinson, M., Laurie, R.D., Stoner, G.D., Greisiger, E., Meier, J.R. and Stober, J. 1984a, Carcinogenic effects of acrylamide in sencar and A/J mice. Cancer Res 44: 107–111.

    CAS  Google Scholar 

  • Bull, R.J., Robinson, M. and Stoner, G.D. 1984b, Carcinogenic activity of acrylamide in the skin and lung of Swiss-ICR mice. Cancer Lett 24: 209–212.

    Article  CAS  Google Scholar 

  • Burek, J.D., Albee, R.R., Beyer, J.E., Bell, T.J., Carreon, R.M., Morden, D.C., Wade, C.E., Hermann, E.A. and Gorzinski, S.J. 1980, Subchronic toxicity of acrylamide administered to rats in drinking water followed by up to 144 days of recovery. J. Environ. Pathol. Toxicol. 4: 157–182.

    CAS  Google Scholar 

  • Calleman, C.J. The metabolism and pharmacokinetics of acrylamide: implications for mechanisms of toxicity and human risk estimation. Drug Met. Rev. 28: 527–590.

    Google Scholar 

  • Cavanagh, J.B. 1964, The significance of the “dying-back” process in experimental and human neurological disease. Int. Rev. Exp. Pathol. 3: 219–267.

    CAS  Google Scholar 

  • Cavanagh, J.B. 1979, The dying back process. Arch. Pathol. Lab. Med. 103: 659–664.

    CAS  Google Scholar 

  • Cavanagh, J.B. 1982, The pathokinetics of acrylamide intoxication: a reassessment of the problem. Neuropath Appl Neurobiol 8: 315–336.

    CAS  Google Scholar 

  • Cavins, J.F. and Friedman, M. 1968, Specific modification of protein sulfhydryl groups with α,β-unsaturated compounds. J. Biol. Chem. 243: 3357–3360.

    CAS  Google Scholar 

  • Chapman, E.R., An, S., Barton, N. and Jahn, R. 1994, SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem. 269: 27427–27432.

    CAS  Google Scholar 

  • Chretien, M., Patey, G., Souyri, F. and Droz, B. 1981, Acrylamide-induced neuropathy and impairment of axonal transport of proteins. II. Abnormal accumulations of smooth endoplasmic reticulum as sites of focal retention of fast transported proteins. Electron microscope radioautographic study. Brain Res. 205: 15–28.

    Article  CAS  Google Scholar 

  • Costa, L.G., Deng, H., Gregotti, C., Manzo, L., Faustman, E.M., Bergmark, E. and Calleman C.J. 1992, Comparative studies on the neuro-and reproductive toxicity of acrylamide and its epoxide metabolite glycidamide in the rat. NeuroToxicology 13: 219–224.

    CAS  Google Scholar 

  • Costa, L.G., Deng, H., Calleman, C.J. and Bergmark, E. 1995, Evaluation of the neurotoxicity of glycidamide, an epoxide metabolite of acrylamide: behavioral, neurochemical and morphological studies. Toxicology 98: 151–161.

    Article  CAS  Google Scholar 

  • Crofton, K.M., Padilla, S., Tilson, H.A., Anthony, D.C., Raymer, J.H. and MacPhail, R.C. 1996, The impact of dose rate on the neurotoxicity of acrylamide: The interaction of administered dose, target tissue concentrations, tissue damage, and functional effects. Tox. Appl. Pharmacol. 139: 163–176.

    Article  CAS  Google Scholar 

  • DeGrandchamp, R.L. and Lowndes, H.E. 1990, Early degeneration and sprouting at the rat neuromuscular junction following acrylamide administration. Neuropath. Appl. Neurobiol. 16: 239–254.

    CAS  Google Scholar 

  • DeGrandchamp, R.L., Reuhl, K.R. and Lowndes, H.E. 1990, Synaptic terminal degeneration and remodeling at the rat neuromuscular junction resulting from a single exposure to acrylamide. Tox Appl Pharmacol 105: 422–433.

    Article  CAS  Google Scholar 

  • De Rojas, T.C, and Goldstein, B.D. 1987, Primary afferent terminal function following acrylamide: alterations in the dorsal root potential and reflex. Tox. Appl. Pharmacol. 88: 175–182.

    Article  Google Scholar 

  • Deng, H., He, S. and Zhang, S. 1993, Quantitative measurements of vibration threshold in healthy adults and acrylamide workers. Int. Arch. Occup. Environ. Health 65: 53–56.

    Article  CAS  Google Scholar 

  • Dixit, R., Sas, M., Seth, P.K. and Mukhtar, H. 1986, Interaction of acrylamide with bovine serum albumin. Environ. Res. 40: 365–371.

    Article  CAS  Google Scholar 

  • Dschida, W.J.A, and Bowman, B.J. 1995, The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J. Biol. Chem. 270: 1557–1563.

    Article  CAS  Google Scholar 

  • Edwards, P.M. 1975, The distribution and metabolism of acrylamide and its neurotoxic analogues in rats. Biochem. Pharmacol. 24: 1277–1282.

    Article  CAS  Google Scholar 

  • Edwards, P.M. and Parker, V.H. 1977, A simple, sensitive and objective method for early assessment of acrylamide neuropathy in rats. Tox. Appl. Pharmacol. 40: 589–591.

    Article  CAS  Google Scholar 

  • Erecinska, M. and Nelson, D. 1994, Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevance to neurodegenerative brain diseases. J. Neurochem. 63: 1033–1041.

    Article  CAS  Google Scholar 

  • Friedman, M.A., Dulak, L.H. and Stedham, M.A. 1995, A lifetime oncogenicity study in rats with acrylamide. Fund. Appl. Toxicol. 27: 95–105.

    Article  CAS  Google Scholar 

  • Friedman, M., 1973, Nucleophilic additions. In: The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides, and Proteins, Chapter 4. New York: Pergamon Press, 1973. pp. 88–134.

    Google Scholar 

  • Garland, T.O. and Patterson M. 1967, Six cases of acrylamide poisoning. Brit Med J 4: 134–138.

    Article  CAS  Google Scholar 

  • Gilbert, H.F. 1982, Biological disulfides: the third messenger? J. Biol. Chem. 257: 12086–12091.

    CAS  Google Scholar 

  • Ghetti, B., Wisneiwski, H.M., Cook, R.D. and Schaumburg, H.H. 1973, Changes in the CNS after acute and chronic acrylamide intoxication. Am. J. Pathol. 70: 78A.

    Google Scholar 

  • Goldstein, B.D. and Lowndes, H.E. 1979, Spinal cord defect in the peripheral neuropathy resulting from acrylamide. NeuroToxicology 1: 75–87.

    CAS  Google Scholar 

  • Goldstein, B.D. and Lowndes, H.E. 1981, Group Ia primary afferent terminal defect in cats with acrylamide neuropathy. NeuroToxicology 2: 297–312.

    CAS  Google Scholar 

  • Hashimoto, K. and Aldridge, W.N. 1970, Biochemical studies on acrylamide, a neurotoxic agent. Biochem Pharmacol 19, 2591–2604.

    Article  CAS  Google Scholar 

  • He, F., Zhang, S. and Wang, H. 1989, Neurological and electroneuromyographic assessment of the adverse effects of acrylamide on occupationally exposed workers. Scand. J. Work Environ. Health 15: 125–129.

    CAS  Google Scholar 

  • Hinson, J.A. and Roberts, D.W. 1992, Role of covalent and noncovalent interactions in cell toxicity: effects on proteins. Annu. Rev. Pharmacol. Toxicol. 32: 471–510.

    Article  CAS  Google Scholar 

  • Jahn, R. and Sudhof, T.C. 1999, Membrane fusion and exocytosis. Ann. Rev. Biochem. 68: 863–911.

    Article  CAS  Google Scholar 

  • Jennekens, F.G.I., Veldman, H., Schotman, P. and Gispen, W.H. 1979, Sequence of motor nerve terminal involvement in acrylamide neuropathy. Acta Neuropath 46: 57–63.

    Article  CAS  Google Scholar 

  • Johnson, K.A., Gorzinski, S.J., Bodner, K.M., Campbell, R.A., Wolf, C.H., Friedman, M.A. and Mast, R.W. 1986, Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicol. Appl. Pharmacol. 85: 154–168.

    Article  CAS  Google Scholar 

  • Kemplay, S, and Cavanagh, J.B. 1984a, Effects of acrylamide and other sulfhydryl compound in vivo and in vitro on staining of motor nerve terminals by the zinc iodide-osmium technique. Musc Nerve 7: 94–100.

    Article  CAS  Google Scholar 

  • Kemplay, S. and Cavanagh, J.B. 1984b, Effects of acrylamide and some other sulfhydryl reagents on spontaneous and pathologically induced terminal sprouting from motor end-plates. Musc Nerve 7: 101–109.

    Article  CAS  Google Scholar 

  • Kuperman, A.S. 1958, Effects of acrylamide on the central nervous system of the cat. J. Pharmacol Exp Ther 123: 180–192.

    CAS  Google Scholar 

  • Lasek, R.J., Garner, J.A. and Brady, S.T. 1984, Axonal transport of the cytoplasmic matrix. J. Cell Biol 99: 212–221.

    Article  CAS  Google Scholar 

  • Lehning, E.J., LoPachin, R.M., Matthew, J. and Eichberg, J. 1994, Changes in Na-K ATPase and protein kinase C activities in peripheral nerve of acrylamide-treated rats. J. Tox. Environ. Health 42: 331–342.

    Article  CAS  Google Scholar 

  • Lehning, E.J., Gaughan, C.L. and LoPachin, R.M. 1997, Acrylamide intoxication modifies in vitro responses of peripheral nerve axonal to anoxia. J Periph Nerv Sys 2: 165–174.

    CAS  Google Scholar 

  • Lehning, E.J., Persaud, A., Dyer, K.R., Jortner, B.S. and LoPachin, R.M. 1998, Biochemical and Morphologic characterization of acrylamide peripheral neuropathy. Toxicol. Appl. Pharmacol. 151: 211–221.

    Article  CAS  Google Scholar 

  • Lehning, E.J., Balaban, C.D., Ross, J.F., Reid, M.L. and LoPachin, R.M. 2002a, Acrylamide neuropathy. I. Spatiotemporal characteristics of nerve cell damage in rat cerebellum. NeuroToxicology 23: 397–414.

    Article  CAS  Google Scholar 

  • Lehning, E.J., Balaban, C.D., Ross, J.F. and LoPachin, R.M. 2002b, Acrylamide neuropathy. II. Spatiotemporal characteristics of nerve cell damage in rat brainstem and spinal cord. NeuroToxicology 23: 415–429.

    Article  CAS  Google Scholar 

  • Lehning, E.J., Balaban, C.D., Ross, J.F. and LoPachin, R.M. 2003, Acrylamide neuropathy. III. Spatiotemporal characteristics of nerve cell damage in rat forebrain. NeuroToxicology 24: 124–136.

    Google Scholar 

  • Lin, R.C. and Scheller, R.H. 2000, Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16: 19–49.

    Article  CAS  Google Scholar 

  • Lipton, S.A, Choi, Y.B., Pan, Z.H., Lei, S.Z., Chen, H.S.V., Sucher, N.J., Loscalzo, J., Singel, D.J. and Stamier, J.S. 1993, A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626–631.

    Article  CAS  Google Scholar 

  • Littleton, J.T., Chapman, E.R., Kreber, R., Garment, M.B., Carlson, S.D. and Ganetzky, B. 1998, Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21: 401–413.

    Article  CAS  Google Scholar 

  • Lombet, A., Laduron, P., Mourre, C., Jacomet, Y. and Lazdunski, M. 1986, Axonal transport of Na, K-ATPase identified as an ouabain binding site in rat sciatic nerve. Neurosci Letts 64: 177–183.

    Article  CAS  Google Scholar 

  • LoPachin, R.M., Moore, R.W., Menahan, L.A. and Peterson, R.E. 1984, Glucose-dependent lactate production by homogenates of neuronal tissues prepared from rats treated with 2,4-dithiobiuret, acrylamide, p-bromophenylacetylurea and 2,5-hexanedione, Neuro Toxicology 5: 25–36.

    CAS  Google Scholar 

  • LoPachin, R.M. and Lehning, E.J. 1994, Acrylamide-induced distal axon degeneration: A proposed mechanism of action. NeuroToxicology 15: 247–260.

    CAS  Google Scholar 

  • LoPachin, R.M., Lehning, E.J., Opanashuk, L.A. and Jortner, B.S. 2000, Rate of neurotoxicant exposure determines morphologic manifestations of distal axonopathy. Tox Appl Pharmacol 167: 75–86.

    Article  CAS  Google Scholar 

  • LoPachin, R.M., Ross, J.F. and Lehning, E.J. 2002a, Nerve terminals as the primary site of acrylamide action. NeuroToxicology 23: 43–59.

    Article  CAS  Google Scholar 

  • LoPachin, R.M., Ross, J.F., Reid, M.L., Dasgupta, S., Mansukhani, S. and Lehning, E.J. 2002b, Neurological evaluation of toxic axonopathies in rats: acrylamide and 2,5-hexanedione. NeuroToxicology 23: 95–110.

    Article  CAS  Google Scholar 

  • LoPachin, R.M., Balaban, C.D. and Ross, J.F. 2003, Acrylamide axonopathy revisited. Tox. Appl. Pharmacol. 188:135–153.

    Article  CAS  Google Scholar 

  • LoPachin, R.M., Schwarcz, A.I., Gaughan, C.L., Mansukhani, S. and Das, S. 2004, In vivo and in vitro effects of acrylamide on synaptosomal neurotransmitter uptake and release. NeuroToxicology 25: 349–363.

    Article  CAS  Google Scholar 

  • Lowndes, H.E. and Baker, T. 1976, Studies on drug-induced neuropathies. III. Motor nerve deficit in cats with experimental acrylamide neuropathy. Europ. J. Pharmacol. 35: 177–184.

    Article  CAS  Google Scholar 

  • Lowndes, H.E., Baker, T., Michelson, L.P. and Vincent-Ablazey, M. 1978a, Attenuated dynamic responses of primary endings of muscle spindles: A basis for depressed tendon responses in acrylamide neuropathy. Ann. Neurol. 3: 433–437.

    Article  CAS  Google Scholar 

  • Lowndes, H.E., Baker, T., Cho, E.-S. and Jortner, B.S. 1978b, Position sensitivity of de-efferented muscle spindles in experimental acrylamide neuropathy. J. Pharmacol. Exp. Ther. 205: 40–48.

    CAS  Google Scholar 

  • Malhotra, V., Orci, L., Glick, B.S., Block, M.R. and Rothman, J.E. 1988, Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54: 221–227.

    Article  CAS  Google Scholar 

  • Mastrogiacomo, A. and Gundersen, C.B. 1995, The nucleotide and deduced amino acid sequence of a rat cysteine string protein. Mole. Brain Res. 28: 12–18.

    Article  CAS  Google Scholar 

  • Mata, M., Datta, S., Jin, C.F. and Fink, D.J. 1993, Differential axonal transport of individual Na,K-ATPase catalytic (α) subunit isoforms in rat sciatic nerve. Brain Res. 618: 295–298.

    Article  CAS  Google Scholar 

  • Medrano, C.J. and LoPachin, R.M. 1989, Effects of acrylamide and 2,5-hexanedione on brain mitochondrial respiration. NeuroToxicology 10: 249–256.

    CAS  Google Scholar 

  • Miller, M.S., Carter, D.E. and Sipes, I.G. 1982, Pharmacokinetics of acrylamide in Fisher-334 rats. Tox Appl Pharmacol 63: 36–44.

    Article  CAS  Google Scholar 

  • Moser, V.C., Anthony, D.C., Sette, W.F. and MacPhail, R.C. 1992, Comparison of subchronic neurotoxicity of 2-hydroxyethyl acrylate and acrylamide in rats. Fundam. Appl. Toxicol. 18: 343–352.

    Article  CAS  Google Scholar 

  • Munch, G., Lincoln, J., Maynard, K.I., Belai, A. and Burnstock, G. 1994, Effects of acrylamide on cotransmission in perivascular sympathetic and sensory nerves. J. Auton. Nerv. Sys. 49: 197–205.

    Article  CAS  Google Scholar 

  • Nichols, B.J. and Pelham, H.R.B. 1998, SNAREs and membrane fusion in the Golgi apparatus. Biochen. Biophys. Acta 1404: 9–31.

    Article  CAS  Google Scholar 

  • Pan, Z.H., Bahring, R., Grantyn, R. and Lipton, S.A. 1995, Differential modulation by sulfhydryl redox agents and glutathione of GABA-and glycine-evoked currents in rat retinal ganglion cells. J. Neurosci. 15: 1384–1391.

    CAS  Google Scholar 

  • Prineas, J. 1969, The pathogenesis of dying-back polyneuropathies. Part II. An ultrastructural study of experimental acrylamide intoxication in the cat. J. Neuropath. Exp. Neurol. 28: 598–621.

    CAS  Google Scholar 

  • Rosen, J. and Hellenas, K.E. 2002, Analysis of acrylamide in cooked foods by liquid chromatography and tandem mass spectrometry. The Analyst 127: 880–882.

    Article  CAS  Google Scholar 

  • Rothman, J.E. 1994, Mechanisms of intracellular protein transport. Nature 372: 55–63.

    Article  CAS  Google Scholar 

  • Sabri, M.I. and Spencer, P.S. 1980, Toxic distal axonopathy: biochemical studies and hypothetical mechanisms. In: Spencer PS, Schaumburg HH, editors. Experimental and clinical neurotoxicology. Baltimore, MD: Williams & Wilkins, p. 206–219.

    Google Scholar 

  • Sanders, R.A., Zyzak, D.V., Stojanovic, M., Tallmadge, D.H., Eberhart, B.L. and Ewald, D.K. 2002, An LC/MS acrylamide method and it’s use in investigating the role of asparagine. Presented at the Annual Meeting of AOAC International, September 26.

    Google Scholar 

  • Schaumburg, H.H., Wisniewski, H.M. and Spencer, P.S. 1974, Ultrastructural studies of the dying-back process. I. Peripheral nerve terminal and axon degeneration in systemic acrylamide intoxication. J. Neuropath. Exp. Neurol. 33: 260–284.

    Article  CAS  Google Scholar 

  • Sega, G.A., Valdivia, Alcota, R.P., Tancogco, C.P. and Brimer, P. 1989, Acrylamide binding to the DNA and protamine of spermiogenic stages in the mouse and its relationship to genetic damage. Mutat. Res. 216: 221–230.

    CAS  Google Scholar 

  • Shell, L., Rozum, M., Jortner, B.S. and Ehrich, M. 1992, Neurotoxicity of acrylamide and 2,5-hexanedione in rats evaluated using a functional observational battery and pathological examination. Neurotox. Teratol. 14: 273–283.

    Article  CAS  Google Scholar 

  • Sickles, D.W., Fowler, S.R. and Testino, A.R. 1990, Effects of neurofilamentous axonopathyproducing neurotoxicants on in vitro production of ATP by brain mitochondria. Brain Res. 528: 25–31.

    Article  CAS  Google Scholar 

  • Sickles, D.W., Stone, J.D. and Friedman, M.A. 2002, Fast axonal transport: a site of acrylamide neurotoxicity. NeuroToxicology 23: 223–251.

    Article  CAS  Google Scholar 

  • Spencer, P.S. and Schaumburg, H.H. 1974a, A review of acrylamide neurotoxicity. Part I. Properties, uses and human exposure.. Can. J. Neurol. Sci. 1: 151–169.

    Google Scholar 

  • Spencer, P.S. and Schaumburg, H.H. 1974b, A review of acrylamide neurotoxicity. Part II. Experimental animal neurotoxicity and pathologic mechanisms. Can J Neurol Sci 1: 170–192.

    Google Scholar 

  • Spencer, P.S. and Schaumburg, H.H. 1976, Central-peripheral distal axonopathy-The pathology of dying-back polyneuropathies. In: Progress in Neuropathology. Zimmerman H., ed., New York, Grune & Stratton, 3: 253–276.

    Google Scholar 

  • Spencer, P.S. and Schaumburg, H.H. 1977a, Ultrastructural studies of the dying-back process. III. The evolution of experimental peripheral giant axonal degeneration. J Neuropath Exp Neurol 36: 276–299.

    CAS  Google Scholar 

  • Spencer, P.S. and Schaumburg, H.H. 1977b, Ultrastructural studies of the dying-back process. IV. Differential vulnerability of PNS and CNS fibers in experimental central-peripheral distal axonopathy. J. Neuropath. Exp. Neurol. 36: 300–320.

    CAS  Google Scholar 

  • Sumner, S., Fennell, T., Moore, T.A., Chanas, B., Gonzalez, F. and Ghanayem, B.I. 1999, Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem Res Toxicol 12: 1110–1116.

    Article  CAS  Google Scholar 

  • Suzuki, K. and Pfaff, L. 1973, Acrylamide neuropathy in rats. An electron microscopic study of degeneration and regeneration. Acta Neuropathol. 24: 197–203.

    Article  CAS  Google Scholar 

  • Tagaya, M., Wilson, D.W., Brunner, M., Arango, N. and Rothman, J.E. 1993, Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J. Biol. Chem. 268: 2662–2666.

    CAS  Google Scholar 

  • Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. and Tornqvist, M. 2000, Acrylamide: A cooking carcinogen? Chem. Res. Toxicol. 13: 517–522.

    Article  CAS  Google Scholar 

  • Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. and Tornqvist, M. 2002, Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 50: 4998–5006.

    Article  CAS  Google Scholar 

  • Tilson, H.A. and Cabe, P.A. 1979, The effects of acrylamide given acutely or in repeated doses on fore-and hindlimb function of rats. Tox. Appl. Pharmacol. 47; 253–260.

    Article  CAS  Google Scholar 

  • Tolar, L.A. and Pallanck, L. 1998, NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J. Neurosci. 18: 10250–10256.

    CAS  Google Scholar 

  • Tsujihata, M., Engel, A.G. and Lambert, E.H. 1974, Motor end-plate fine structure in acrylamide dying-back neuropathy: A sequential morphometric study. Neurology 24: 849–856.

    CAS  Google Scholar 

  • Tyl, R.W., Marr, M.C., Myers, C.B., Ross, W.P. and Friedman, M.A. 2000a, Relationship between acrylamide reproductive and neurotoxicity in male rats. Reprod Toxicol 14: 147–157.

    Article  CAS  Google Scholar 

  • Whiteheart, S.W., Rossnagel, K., Buhrow, S.A., Brunner, M., Jaenicke, R. and Rothman, J.E. 1994, N-Ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126: 945–954.

    Article  CAS  Google Scholar 

  • Working, P., Bentley, K., Hurtt, M. and Mohr, K. 1987, Comparison of the dominant lethal effects of acrylonitrile and acrylamide in male Fischer 344 rats. Mutagenesis 2: 215–220.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

LoPachin, R.M. (2005). Acrylamide Neurotoxicity: Neurological, Morhological and Molecular Endpoints in Animal Models. In: Friedman, M., Mottram, D. (eds) Chemistry and Safety of Acrylamide in Food. Advances in Experimental Medicine and Biology, vol 561. Springer, Boston, MA. https://doi.org/10.1007/0-387-24980-X_2

Download citation

Publish with us

Policies and ethics