Skip to main content

The Design, Planning, and Optimization of Reverse Logistics Networks

  • Chapter
Logistics Systems: Design and Optimization

Abstract

Reverse logistics is concerned with the return flows of products or equipment back from the consumer to the logistics network for reuse, recovery or recycling for environmental, economic or customer service reasons. In this paper, we review applications, case studies, models and techniques proposed for the design, planning and optimization of reverse logistics systems. We consider both cases of separate and integrated handling of original products and return flows throughout the logistics network. According to the hierarchical planning framework for logistics systems, the works are described in relation to their contribution to strategic, tactical or operational planning. Major contributions concern facility location, inventory management, transportation and production planning models. Directions for further research are indicated in all of these areas as well as for the general development of reverse logistics activities in a supply chain network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthony, R.N. (1965). Planning and Control Systems: A Framework for Analysis. Harvard University, Graduate School of Business Administration, Cambridge, MA.

    Google Scholar 

  • Axsater, S. (1980). Feasibility and Optimality of Aggregate Plans. OR Report No. 167, North Carolina State University.

    Google Scholar 

  • Barros, A.I., Dekker, R., and Scholten, V. (1998). A two-level network for recycling sand: a case study. European Journal of Operational Research, 110:199–214.

    Article  Google Scholar 

  • Beaulieu, M., Martin, R., and Landry, S. (1999). Logistique á rebours: un portrait nord-américain. Logistique & Management, 7:5–14.

    Google Scholar 

  • Beltran, J.L. and Krass, D. (2002). Dynamic lot sizing with returning items and disposals. IIE Transactions, 34:437–448.

    Article  Google Scholar 

  • Bitran, G.R. and Tirupati, D. (1993). Hierarchical production planning. In: S.C. Graves, H.H.G. Rinnooy Kan, and P.H. Zipkin (eds.), Logistics of Production and Inventory. HandbooKs in Operations Research and Management Science, Volume 4, Elsevier Science Publishers B.V.

    Google Scholar 

  • Bloemhof-Ruwaard, J., Salomon, M. Van Wassenhove, L.N. (1996). The capacitated distribution and waste disposal problem. European Journal of Operational Research, 88:490–503.

    Article  Google Scholar 

  • Boskma, K. (1982). Aggregation and the design of models for medium term planning of production. European Journal of Operational Research, 10:244–249.

    Article  Google Scholar 

  • Browne, M. and Allen, J. (1999). Récupération des déchets d'emballage en Grande-Bretagne: quelles implications logistiques? Logistique & Management, 7(2):37–43.

    Google Scholar 

  • Canel, C., Khumawala, B.M., Law, J., and Loh, A. (2001). An algorithm for the capacitated, multi-commodity multi-period facility location problem. Computers & Operations Research, 28:411–427.

    Article  MathSciNet  Google Scholar 

  • Chardaire, P. and Sutter, A. (1996). Solving the dynamic facility location problem. Networks, 28:117–124.

    Article  MathSciNet  Google Scholar 

  • Cho, D.I. and Parlar, M. (1991). A survey of maintenance models for multi-unit systems. European Journal of Operations Research, 44(6):1–23.

    Article  Google Scholar 

  • Clendenin, J.A. (1997). Closing the supply chain loop: Reengineering the returns channel process. International Journal of Logistics Management, 8:75–85.

    Google Scholar 

  • Cohen, M.A., Nahmias, S., and Pierskalla, W.P. (1980). A dynamic inventory system with recycling. Naval Research Logistics Quarterly, 27(2):289–296.

    Google Scholar 

  • Crainic, T.G., Dejax, P., and Delorme, L. (1989). Models for multimode multicommodity location problems with interdepot balancing requirements. Annals of Operations Research, 18:279–302.

    Article  MathSciNet  Google Scholar 

  • Crainic T.G., Delorme, L., and Dejax, P. (1993a). A branch-and-bound approach for the multicommodity location problem with balancing requirements. European Journal of Operational Research, 65:368–382.

    Article  Google Scholar 

  • Crainic, T.G., Gendreau, M., and Dejax, P. (1993b). Dynamic and stochastic models for the allocation of empty containers. Operations Research, 41:102–126.

    Article  Google Scholar 

  • Crainic, T.G. and Laporte, G. (1997). Planning models for freight transportation. European Journal of Operational Research, 97:409–438.

    Article  Google Scholar 

  • De Brito, M.P. and Dekker, R. (2002). Reverse Logistics — A Framework. Econometric Institute Report EI 2002-38, Erasmus University, Rotterdam.

    Google Scholar 

  • De Brito, M.P., Dekker, R., and Flapper, S.D.P. (2003). Reverse Logistics — A Review of Case Studies. ERIM Report Series Research in Management ERS-2003-012-LIS, Working paper of Erasmus University, Rotterdam.

    Google Scholar 

  • Del Castillo, E. and Cochran, J.K. (1996). Optimal short horizon distribution operations in reusable containers. Journal of the Operational Research Society, 47:48–60.

    Google Scholar 

  • Dejax, P. and Crainic, T.G. (1987). A review of empty flows and fleet management models in fleet transportation. Transportation Science, 21(4):227–247.

    Google Scholar 

  • Dejax, P. (2001). Stratégie, planification et implantation du système logistique. In: J.-P. Campagne and P. Burlat (eds.), Maîtrise et organisation des flux industriels, pp. 129–160. Hermes, Lavoisier.

    Google Scholar 

  • Dekker, R. and van der Laan, E.A. (1999). Gestion des stocks pour la fabrication et la refabrication simultanées: synthèse de résultats récents. Logistique & Management, 7,59–64.

    Google Scholar 

  • Dethloff, J. (2001). Vehicle routing and reverse logistics: the vehicle problem with simultaneous delivery and pickup. OR Spectrum, 23:79–96.

    MATH  MathSciNet  Google Scholar 

  • Dobos, I. (2003). Optimal production-inventory strategies for a HMMS-type reverse logistics system, International Journal of Production Economics 81–82:351–360.

    Article  Google Scholar 

  • Duhaime, R., Riopel, D. and Langevin, A. (2001). Value analysis and optimization of reusable containers at Canada Post. Interfaces, 31:3–15.

    Article  Google Scholar 

  • Dupont, L. (1998) La gestion industrielle. Hermes, Paris.

    Google Scholar 

  • Erschler, J., Fontan, G., and Mercer, C. (1986). Consistency of the disaggregation process in hierarchical planning. Operations Research, 34(3):464–469.

    Google Scholar 

  • Feillet, D., Dejax, P., and Gendreau, M. (2002). Planification tactique du transport de marchandises inter-usines: application au secteur automobile, Journal Européen des Systèmes Automatisés, 36(1):149–168.

    Google Scholar 

  • Festinger, J.C. (1998). L'arrivée de la “reverse logistics.” Stratégie Logistique, 6:32–54.

    Google Scholar 

  • Flapper, S.D.P. (1994). Matching material requirement availabilities in the context of recycling: An MRP-1 based heuristic. In: Proceedings of the 8th International Working Seminar on Production Economics, pp. 511–519. Innsbruck, Austria.

    Google Scholar 

  • Fleischmann, M. (2001). Quantitative Models for Reverse Logistics. Lecture Notes in Economics and Mathematical Systems, volume 501. Springer.

    Google Scholar 

  • Fleischmann, M., Beullens, P., Bloemhof-Ruwaard, J.M., and Van Wassenhove, L.N. (2000b). The Impact of Product Recovery on Logistics Network Design, Working Paper of the Center for Integrated Manufacturing and Service Operations, INSEAD, 2000/33/TM/CIMSO 11.

    Google Scholar 

  • Fleischmann, M., Bloemhof-Ruwaard, J.M., Dekker, R. van der Laan, E. van Nunen, J.A.E.E., and Van Wassenhove, L.N. (1997). Invited review, quantitative models for reverse logistics: A review. European Journal of Operational Research, 103:1–17.

    Article  Google Scholar 

  • Fleischmann, M., Krikke, H.R., Dekker, R., and Flapper, S.D.P. (2000a). A characterization of logistics networks for product recovery. Omega, 28:653–666.

    Article  Google Scholar 

  • Fleischmann, M. and Kuik, R. (2003). On optimal inventory control with independent stochastic item returns. European Journal of Operational Research, in press.

    Google Scholar 

  • Fleischmann, M., Kuik, R., and Dekker, R. (2002). Controlling inventories with stochastic item returns: A basic model. European Journal of Operational Research, 138:63–75.

    Article  MathSciNet  Google Scholar 

  • Fontanella, J. (1999). La logistique reverse, ou comment transformer le plomb en or. Logistiques Magazine, 141.

    Google Scholar 

  • Gfrerer, H. and Zapfel, G. (1995). Hierarchical model for production planning in the case of uncertain demand. European Journal of Operational Research, 86:142–161.

    Article  Google Scholar 

  • Ginter, P.M. and Starling, J.M. 1978. Reverse distribution channels for recycling. California Management Review, 20(3):73–82.

    Google Scholar 

  • Goetschalckx, M. and Jacobs-Blecha, Ch. (1989). The vehicle routing problem with backhauls. European Journal of Operational Research, 42:39–51.

    Article  MathSciNet  Google Scholar 

  • Guide, V.D.R., Kraus, M.E., and Srivastava, R. (1997). Scheduling policies for remanufacturing, International Journal of Production Economics 48, 187–204.

    Article  Google Scholar 

  • Guide, V.D.R. and Srivastava, R. (1997). Repairable inventory theory: models and applications. European Journal of Operational Research, 102:1–20.

    Article  Google Scholar 

  • Guide, V.D.R, Srivastava, R., and Spencer, M.S. (1997). An evaluation of capacity planning techniques in a remanufacturing environment. International Journal of Production Research, 35:67–82.

    Article  Google Scholar 

  • Gungor, A. and Gupta, S.M. (1999). Issues in environmentally conscious manufacturing and product recovery: A survey. Computers and Industrial Engineering, 36:811–853.

    Article  Google Scholar 

  • Gupta, S.M. and Taleb, K. (1994). Scheduling disassembly. International Journal of Production Research, 32(8):1857–1866.

    Google Scholar 

  • Halse, K. (1992). Modelling and Solving Complex Vehicle Routing Problems. Ph.D. thesis. Institute of Mathematical Statistics and Operations Research, Technical University of Denmark, Lyngby.

    Google Scholar 

  • Harhalakis, G., Nagi, R., and Proth, J.M. (1992). Hierarchical Modeling Approach for Production Planning. Technical Research Report of Systems Research Center No. 14, University of Maryland.

    Google Scholar 

  • Hax, A.C. and Meal, H.C. (1975). Hierarchical integration of production planning and scheduling. In: M.A. Geisler (ed.), Studies in Management Sciences, Vol. 1: Logistics. Elsevier, New York.

    Google Scholar 

  • Herrmann, J.W., Mehra, A., Minis, I., and Proth, J.M. (1994). Hierarchical Production Planning with Part, Spatial and Time Aggregation. Technical Research Report of Systems Research Center No. 32, University of Maryland.

    Google Scholar 

  • Hoshino, T., Yura, K., and Hitomi, K. (1995). Optimization analysis for recycleoriented manufacturing systems. International Journal of Production Research, 33(8):2069–2078.

    Google Scholar 

  • Inderfurth, K. (1997). Simple optimal replenishment and disposal policies for a product recovery system with leadtimes. OR Spectrum, 19:111–122.

    MATH  MathSciNet  Google Scholar 

  • Jayaraman, V., Guide, V.D.R, Jr., and Srivastava, R. (1999). A closed-loop logistics model for remanufacturing. Journal of the Operational Research Society, 50:497–508.

    Google Scholar 

  • Johnson, M.R. and Wang, M.H. (1995). Planning product disassembly for material recovery opportunities. International Journal of Production Research 33(11):3119–3142.

    Google Scholar 

  • Jörnsten, K., Leisten, R. (1995). Decomposition and iterative aggregation in hierarchical and decentralized planning structures. European Journal of Operational Research, 86:120–141.

    Article  Google Scholar 

  • Kelle, P. and Silver, E.A. (1989). Purchasing policy of new containers considering the random returns of previously issued containers. IIE Transactions, 21(4):349–354.

    Google Scholar 

  • Kiesmüller, G.P. (2003). A new approach for controlling a hybrid stochastic manufacturing/remanufacturing system with inventories and different leadtimes. European Journal of Operational Research, 147:62–71.

    Article  MATH  Google Scholar 

  • Kiesmiiller, G.P. and Scherer, C.W. (2003). Computational issues in a stochastic finite horizon one product recovery inventory model. European Journal of Operational Research, 146:553–579.

    Article  MathSciNet  Google Scholar 

  • Kongar, E. and Gupta, S.M. (2000). A goal programming approach to the remanufacturing supply chain model. Environmentally Conscious Manufacturing, pp. 167–178. Proceedings of SPIE, Volume 4193.

    Google Scholar 

  • Krikke, H.R., van Harten, A., and Schuur, P.C. (1998). On a medium term product recovery and disposal strategy for durable assembly products. International Journal of Production Research, 36(1):111–139.

    Article  Google Scholar 

  • Krikke, H. R., van Harten, A., and Schuur P.C. (1999). Business case Roteb: Recovery strategies for monitors. Computers & Industrial Engineering 36:739–757.

    Article  Google Scholar 

  • Louwers, D., Kip, B.J., Peters, E., Souren, F., and Flapper, S. D. P. (1999). A facility location allocation model for reusing carpet materials. Computer & Industrial Engineering 36:855–869.

    Article  Google Scholar 

  • Lu, Z. (2003). Planification hiérarchisée et optimisation des systèmes logistiques avec flux inverses. Ph.D. thesis. Université de Nantes.

    Google Scholar 

  • Lu, Z., Bostel, N., and Dejax, P. (2001). Planification hiérarchisée des systèmes logistiques incluant la logistique inverse: problématique et inodèles stratégiques. Actes du 4e Congrès International de Génie Industriel (GI2001), pp. 1141–1151. Aix-en-Provence Marseille.

    Google Scholar 

  • Lu Z., Bostel, N, and Dejax, P. (2004). The simple plant location problem with reverse flows. In: A. Dolgui, J. Soldek, O. Zaikin (eds.), Suply Chain Optimization. Kluwer Academic Publishers. In press.

    Google Scholar 

  • Mabini, M.C., Pintelon, L.M., and Gelders, L.F. (1992). EOQ type formulations for controlling repairable inventories. International Journal of Production Economics 28:21–33.

    Article  Google Scholar 

  • Mahadevan, B., Pyke, D.F., and Fleischmann, M. (2003). Periodic review, push inventory policies for remanufacturing. European Journal of Operational Research. In press.

    Google Scholar 

  • Mantrala, M.K. and Raman, K. (1999). Demand uncertainty and supplier's returns policies for a multi-store style good retailer. European Journal of Operational Research, 115:270–284.

    Article  Google Scholar 

  • Marín, A. and Pelegrín, B. (1998). The return plant location problem: Modeling and resolution. European Journal of Operational Research 104:375–392.

    Article  Google Scholar 

  • Meacham, A., Uzsoy, R., and Venkatadri, U. (1999). Optimal disassembly configurations for single and multiple products. Journal of Manufacturing Systems 18(5):311–322.

    Google Scholar 

  • Melachrinoudis, E. and Min, H. (2000). The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach. European Journal of Operational Research 123:1–15.

    Article  Google Scholar 

  • Mercé, C. (1987). Cohérence des décisions en planification hierarchisée. Ph.D. thesis. Université Paul Sabatier, Toulouse.

    Google Scholar 

  • Min, H (1989). The multiple vehicle routing problem with simultaneous delivery and pick up points. Transportation Research A, 23:377–386.

    Article  Google Scholar 

  • Min, H, Current, J., and Schilling, D. (1992). The multiple depot vehicle routing problem with backhauling. Journal of Business Logistics, 13:259–288.

    Google Scholar 

  • Minner, S. (2001). Strategic safety stocks in reverse logistics supply chains. International Journal of Production Economics, 71:417–428.

    Article  Google Scholar 

  • Minner S. and Klerber, R. (2001). Optimal control of production and remanufacturing in a simple recovery model with linear cost functions, OR Spectrum, 23:3–24.

    Article  Google Scholar 

  • Moinzadeh, K. and Nahmias, S. (1988). A continuous review model for an inventory system with two supply modes. Management Science, 34(6):761–773.

    MathSciNet  Google Scholar 

  • Muckstadt, J.A. and Isaac, M.H. (1981). An analysis of single item inventory systems with returns. Naval Research Logistics Quarterly, 28:237–254.

    Google Scholar 

  • Nagy, G. and Salhi, S. (2004). Heuristic algorithms for single and multiple depot vehicle routing problems with pickups an deliveries. Forthcoming in European Journal of Operational Research.

    Google Scholar 

  • Nahmias, S. (1981). Managing repairable item inventory systems: a review. TIMS Studies in the Management Sciences, 16:253–277.

    MATH  Google Scholar 

  • Owen, S.H. and Daskin, M.S. (1998). Strategic facility location: a review. European Journal of Operational Research, 111, 423–447.

    Article  Google Scholar 

  • Penev, K.D. and de Ron, A.J. (1996). Determination of a disassembly strategy. International Journal of Production Research, 34(2):495–506.

    Google Scholar 

  • Philipp, B. (1999). Reverse logistics: les formes adéquates de coopération pour la chaine logistique de valorisation des produits en fin de vie. Développements théroriques et approche de terrain, Logistique and Management, 7(2):45–57.

    Google Scholar 

  • Pierskalla, W.P. and Voelker, J.A. (1976). A survey of maintenance models: the control and surveillance of deteriorating systems. Naval Research Logistics Quarterly, 23:353–388.

    MathSciNet  Google Scholar 

  • Ritcher, K. (1996). The extended EOQ repair and waste disposal model, International Journal of Production Economics 45(1–3):443–448.

    Google Scholar 

  • Rogers, D.F., Plante, R D., Wong, R.T., and Evans, J.R. (1991). Aggregation and disaggregation techniques and methodology in optimization. Operations Research, 39(4):553–582.

    MathSciNet  Google Scholar 

  • Rogers, D.S. and Tibben-Lembke, R.S. (1998). Going backwards: Reverse logistics trends and practices. Center for Logistics Management, University of Nevada, Reno, Reverse Logistics Executive Council.

    Google Scholar 

  • Rogers, D.S. and Tibben-Lembke, R.S. (1999). “Reverse logistique”: stratégies et techniques. Logistique and Management, 7(2):15–25.

    Google Scholar 

  • Rohlich, Ph., (1999). Grande enquěte, reverse logistique. Stratégie Logistique, 20:78–93.

    Google Scholar 

  • Rudi, N., Pyke, D.F., and Sporsheim, P.O. (2000). Product recovery at the Norwegian National Insurance Administration. Interfaces 30:166–179.

    Article  Google Scholar 

  • Rusdiansyah, A. and Tsao, D. (2003). An integrated heuristic approach for the period vehicle routing problem with simultaneous delivery and pickup. In: Second International Workshop on Freight Transportation and Logistics. Odysseus 2003, Mondello, Italy, May 27 30.

    Google Scholar 

  • Savelsbergh, M.W.P. and Sol, M. (1995). The general pick up and delivery problem. Transportation Science, 29:17–29.

    Google Scholar 

  • Schneeweifl, Ch. (1995). Hierarchical structures in organizations: A conceptual framework. European Journal of Operational Research, 86:4–31.

    Article  Google Scholar 

  • Schrady, D.A. (1967). A deterministic inventory model for repairable items. Naval Research Logistics Quarterly 14:391–398.

    Google Scholar 

  • Sherbrooke, C.C. (1968). Metric: A multi-echelon technique for recoverable item control. Operations Research 16:122–141.

    Google Scholar 

  • Shih, L. (2001). Reverse logistics system planning for recycling electrical appliances and computers in Taiwan. Resources, Conservation and Recycling, 32:55–72.

    Article  Google Scholar 

  • Simpson V.P. (1978). Optimum solution structure for a repairable inventory problem. Operations Research 26:270–281.

    MATH  MathSciNet  Google Scholar 

  • Spengler, T. (2002). Management of material flows in closed-loop supply chains: Decision support system for electronic scrap recycling companies. In: Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS'03).

    Google Scholar 

  • Spengler, Th., Püchert, H., Penkuhn, T., and Rentz, O. (1997). Environmental integrated production and recycling management. European Journal of Operational Research 97:308–326.

    Article  Google Scholar 

  • Stock, J.R. (1999). Développement et mise en úuvre des programmes de reverse logistics, Logistique & Management, 7(2):79–84.

    Google Scholar 

  • Taleb, K and Gupta, S.M. (1997). Disassembly of multiple product structures. Computers and Industrial Engineering, 32(4):949–961.

    Article  Google Scholar 

  • Teunter, R. (2001). Economic ordering quantities for recoverable item inventory systems, Naval Research Logistics 48:484–495.

    Article  MATH  MathSciNet  Google Scholar 

  • Thierry M.C. (1997). An Analysis of the Impact of Product Recovery Management on Manufacturing Companies, Ph.D. thesis, Erasmus University, Rotterdam.

    Google Scholar 

  • Thierry, M.C., Salomon, M., van Nunen, J.A.E.E., and Van Wassenhove, L.N. (1993). Strategic Production and Operations Management Issues in Product Recovery Management, Management Report Series No. 145. Erasmus University/Rotterdam School of Management.

    Google Scholar 

  • Thierry, M.C., Salomon, M., van Nunen, J., and Van Wassenhove, L. (1995). Strategic issues in product recovery management. California Management Review 37:114–135.

    Google Scholar 

  • Toktay, L.B., Wein, L.M., and Zenios, S.A. (2000). Inventory management for remanufacturable products. Management Science, 46:1412–1426.

    Article  Google Scholar 

  • van der Laan, E.A. (1997). The Effects of Remanufacturing on Inventory Control, Ph.D. thesis, Erasmus University, Rotterdam.

    Google Scholar 

  • van der Laan, E. and Salomon, M. (1997). Production planning and inventory control with remanufacturing and disposal. European Journal of Operational Research 102:264–278.

    Article  Google Scholar 

  • van der Laan, E., Salomon, M., and Dekker, R. (1999). An investigation of lead-time effects in manufacturing/remanufacturing systems under simple PUSH and PULL control strategies. European Journal of Operational Research 115:195–214.

    Article  Google Scholar 

  • Veerakamolmal, P., S.M. Gupta, 2000. Optimizing the supply chain in reverse logistics. Environmentally Conscious Manufacturing, pp. 167–178. Proceedings of SPIE, Volume 4193.

    Google Scholar 

  • Vicens, E., Alemany, M.E., Andrés, C., and Guarch, J.J. (2001). A design and application methodology for hierarchical production planning decision support systems in an enterprise integration context. International Journal of Production Economics, 74:5–20.

    Article  Google Scholar 

  • Vlachos, D. and Dekker, R. (2003). Return handling options and order quantities for single period products. European Journal of Operational Research, 151:38–52.

    Article  MathSciNet  Google Scholar 

  • Vural, A.V. (2004). A GA Based Meta-Heuristic for the Capacitated Vehicle Routing Problem with Simultaneous Pick Up an Deliveries, M.Sc. thesis, Sabanci University, Turkey.

    Google Scholar 

  • Wade, A.C. and Salhi, S. (2002). An investigation into a new class of vehicle routing problems with backhauls. Omega, 30:479–487.

    Article  Google Scholar 

  • Whisler, W.D. (1967). A stochastic inventory model for rented equipment. Management Science, 13(9):640–647.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bostel, N., Dejax, P., Lu, Z. (2005). The Design, Planning, and Optimization of Reverse Logistics Networks. In: Langevin, A., Riopel, D. (eds) Logistics Systems: Design and Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-387-24977-X_6

Download citation

Publish with us

Policies and ethics