Skip to main content

Operational Research Methods for Efficient Warehousing

  • Chapter
Logistics Systems: Design and Optimization

Abstract

The design and operation of a warehouse entail many challenging decision problems. We begin by providing definitions as well as qualitative descriptions of two actual warehouses. This will then set the stage for an overview of representative operational research models and solution methods for efficient warehousing. Problems which will be exposed can be classified into three major categories: throughput capacity models, storage capacity models, and warehouse design models. We conclude by identifying future research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdou, G. and El-Masry, M. (2000). Three-dimensional random stacking of weakly heterogeneous palletization with demand requirements and stability measures. International Journal of Production Research, 38:3149–3163.

    Article  Google Scholar 

  • Anily, S. (1991). Multi-item replenishment and storage problem (MIRSP): Heuristics and bounds. Operations Research, 39:233–243.

    Article  MATH  MathSciNet  Google Scholar 

  • Apte, U.M. and Viswanathan, S. (2000). Effective cross docking for improved distribution efficiencies. International Journal of Logistics: Research and Applications, 3:291–302.

    Article  Google Scholar 

  • Ashayeri, J. and Gelders, L.F. (1985). Warehouse design optimization. European Journal of Operational Research, 21:285–294.

    Article  Google Scholar 

  • Ashayeri, J., Gelders, L.F., and Van Wassenhove, L.A. (1985). A micro-computer-based optimization model for the design of automated warehouses. International Journal of Production Research, 23:825–839.

    Article  Google Scholar 

  • Azadivar, F. (1986). Maximization of the throughput of a computerized automated warehousing system under system constraints. International Journal of Production Research, 24:551–566.

    Article  Google Scholar 

  • Azadivar, F. (1989). Optimum allocation of resources between the random access and rack storage spaces in an automated warehousing system. International Journal of Production Research, 27:119–131.

    Article  Google Scholar 

  • Balasubramanian, R. (1992). The pallet loading problem: A survey. International Journal of Production Economics, 28:217–225.

    Article  Google Scholar 

  • Barnes, C.R. (1999). The hidden costs of a WMS. IIE Solutions, January:40–44.

    Google Scholar 

  • Bartholdi III, J.J., Eisenstein, D.D., and Foley, R.D. (2001). Performance of bucket brigades when work is stochastic. Operations Research, 49:710–719.

    Article  Google Scholar 

  • Bartholdi III, J.J. and Gue, K.R. (2000). Reducing labor cost in an LTL crossdocking terminal. Operations Research, 48:823–832.

    Article  Google Scholar 

  • Bartholdi III, J.J. and Gue, K.R. (2004). The best shape for a crossdock. Transportation Science, 38:235–244.

    Article  Google Scholar 

  • Bartholdi III, J.J. and Hackman, S.T. (2003). Warehouse & Distribution Science. http://www.warehouse-science.com.

    Google Scholar 

  • Bassan, Y., Roll, Y., and Rosenblatt, M.J. (1980). Internal layout design of a warehouse. AIIE Transactions, 12:317–322.

    Google Scholar 

  • Bhaskaran, K. and Malmborg, C.J. (1990). Economic tradeoffs in sizing warehouse reserve storage area. Applied Mathematical Modelling, 14:381–385.

    Article  MathSciNet  Google Scholar 

  • Bozer, Y.A. (1985). Optimizing Throughput Performance in Designing Order Picking Systems. Unpublished Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA.

    Google Scholar 

  • Bozer, Y.A., Schorn, E.C., and Sharp, G.P. (1986). Analyzing picker-to-part order picking problems. Proceedings of the 7th International Conference on Automation in Warehousing, pages 155–164, IFS Publications.

    Google Scholar 

  • Bozer, Y.A., Schorn, E.C., and Sharp, G.P. (1990). Geometric approaches to the Chebyshev traveling salesman problem. IIE Transactions, 22:238–252.

    Article  Google Scholar 

  • Bozer, Y.A. and White, J.A. (1984). Travel-time models for automated storage/retrieval systems. IIE Transactions, 16:329–338.

    Article  Google Scholar 

  • Bozer, Y.A. and White, J.A. (1990). Design and performance models for end-of-aisle order picking systems. Management Science, 36:852–866.

    Article  Google Scholar 

  • Brockmann, T. (1999). 21 warehousing trends in the 21st Century. IIE Solutions, July:36–40.

    Google Scholar 

  • Carlson, J.G. and Yao, A.C. (1996). A visually interactive expert system for a distribution center environment. International Journal of Production Economics, 45:101–109.

    Article  Google Scholar 

  • Caron, F., Marchet, G., and Perego, A. (1998). Routing policies and COI-based storage policies in picker-to-part systems. International Journal of Production Research, 36:713–732.

    Article  Google Scholar 

  • Chang, D.T., Wen, U.P., and Lin, J.T. (1995). The impact of acceleration/deceleration on travel-time models for automated storage/retrieval systems. IIE Transactions, 27:108–111.

    Article  Google Scholar 

  • Chen, C.S., Lee, S.M., and Shen, Q.S. (1995). An analytical model for the container loading problem. European Journal of Operational Research, 80:68–765.

    Article  Google Scholar 

  • Chen, F.Y., Hum, S.H., and Sun, J. (2001). Analysis of third-party warehousing contracts with commitments. European Journal of Operational Research, 131:603–610.

    Article  Google Scholar 

  • Chew, E.P. and Tang, L.C. (1999). Travel time analysis for general item location assignment in a rectangular warehouse. European Journal of Operational Research, 112:582–597.

    Article  Google Scholar 

  • Clarke, G. and Wright, J.W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12:568–581.

    Article  Google Scholar 

  • Colson, G. and Dorigo, F. (2003). A public warehouses selection support system. European Journal of Operational Research, 153:332–349.

    Article  Google Scholar 

  • Cormier, G. (1987). On the scheduling of order picking operations in a single-aisle automated storage and retrieval system. In: A Kusiak (ed.), Modern Production Management Systems, pages 75–87, North-Holland, Amsterdam.

    Google Scholar 

  • Cormier, G. and Gunn, E.A. (1992). A review of warehouse models. European Journal of Operational Research, 58:3–13.

    Article  Google Scholar 

  • Cormier, G. and Gunn, E.A. (1996a). Simple models and insights for warehouse sizing. Journal of the Operational Research Society, 47:690–696.

    Google Scholar 

  • Cormier, G. and Gunn, E.A. (1996b). On the coordination of warehouse sizing, leasing and inventory policy. IIE Transactions, 28:149–154.

    Article  Google Scholar 

  • Cormier, G. and Gunn, E.A. (1999). Modelling and analysis for capacity expansion planning in warehousing. Journal of the Operational Research Society, 50:52–59.

    Google Scholar 

  • Daniels, R.L., Rummel, J.L. and Schantz, R. (1998). A model for warehouse order picking. European Journal of Operational Research, 105:1–17.

    Article  Google Scholar 

  • De Koster, R. (1994). Performance approximation of pick-to-belt orderpicking systems. European Journal of Operational Research, 72:558–573.

    Article  MATH  Google Scholar 

  • De Koster, R. and Van der Poort, E. (1998). Routing order pickers in a warehouse: A comparison between optimal and heuristic solutions. IIE Transactions, 30:469–480.

    Article  Google Scholar 

  • De Koster, R., Van der Poort, E., and Wolters, M. (1999). Efficient orderbatching methods in warehousing. International Journal of Production Research, 37:1479–1504.

    Article  Google Scholar 

  • Dowsland, K.A. and Herbert, E.A. (1996). A family of genetic algorithms for the pallet loading problem. Annals of Operations Research, 63:415–436.

    Article  Google Scholar 

  • Eben-Chaime, M. (1992). Operations sequencing in automated warehousing systems. International Journal of Production Research, 30:2401–2409.

    Article  Google Scholar 

  • Eben-Chaime, M. and Pliskin, N. (1997). Operations management of multiple machine automatic warehousing systems. International Journal of Production Economics, 51:83–98.

    Article  Google Scholar 

  • Egbelu, P.J. (1991). Framework for dynamic positioning of storage/retrieval machines in automated storage/retrieval system. International Journal of Production Research, 29:17–37.

    Article  Google Scholar 

  • Egbelu, P.J. and Wu, C.T. (1993). A comparison of dwell point rules in an automated storage/retrieval system. International Journal of Production Research, 31:2515–2530.

    Article  Google Scholar 

  • Elsayed, E.A. and Lee, M.-K. (1996). Order processing in automated storage/ retrieval systems with due-dates. IIE Transactions, 28:567–577.

    Google Scholar 

  • Elsayed, E.A., Lee, M.-K., Kim, S., and Scherer, E. (1993). Sequencing and batching procedures for minimizing earliness and tardiness penalty of order retrievals. International Journal of Production Research, 31:727–738.

    Article  Google Scholar 

  • Elsayed, E.A. and Unal, O.I. (1989). Order batching algorithms and travel-time estimation for automated storage/retrieval systems. International Journal of Production Research, 27:1097–1114.

    Article  Google Scholar 

  • Eynan, A. and Rosenblatt, M.J. (1993). An interleaving policy in automated storage/retrieval systems. International Journal of Production Research, 31:1–18.

    Article  Google Scholar 

  • Foley, R.D. and Frazelle, E.H. (1991). Analytical results for miniload throughput and the distribution of dual command travel time. IIE Transactions, 23:273–281.

    Article  Google Scholar 

  • Gademann, A.J.R.M., Van den Berg, J.P., and Van der Hoff, H.H. (2001). An order batching algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions, 33:385–398.

    Article  Google Scholar 

  • Gibson, D.R. and Sharp, G.P. (1992). Order batching procedures. European Journal of Operational Research, 58:57–67.

    Article  Google Scholar 

  • Goetschalckx, M. (1983). Storage and Retrieval Policies for Efficient Order Picking Operations. Unpublished Ph.D. Thesis. Georgia Institute of Technology, Atlanta, GA.

    Google Scholar 

  • Goetschalckx, M. and Ratliff, H.D. (1988). Order picking in an aisle. IIE Transactions, 20:53–62.

    Article  Google Scholar 

  • Goetschalckx, M. and Ratliff, H.D. (1990). Shared storage policies based on the duration stay of unit loads. Management Science, 36:1120–1132.

    Article  Google Scholar 

  • Goetschalckx, M. and Ratliff, H.D. (1991). Optimal lane depths for single and multiple products in block stacking storage systems. IIE Transactions, 23:245–258.

    Article  Google Scholar 

  • Goh, M., Jihong, O. and Chung-Piaw, T. (2001). Warehouse sizing to minimize inventory and storage costs. Naval Research Logistics, 48:299–312.

    Article  MathSciNet  Google Scholar 

  • Graves, S.C., Hausman, W.H. and Schwarz, L.B. (1977). Storage-retrieval interleaving in automatic warehousing systems. Management Science, 23:935–945.

    Article  Google Scholar 

  • Gray, A.E., Karmakar, U.S. and Seidmann, A. (1992). Design and operation of an order-consolidation warehouse: Models and application. European Journal of Operational Research, 58:14–36.

    Article  Google Scholar 

  • Gue, K.R. (2001). Timing Picking Waves in a Warehouse. Working paper, Naval Postgraduate School, Monterey, CA.

    Google Scholar 

  • Gue, K.R. and Kang, K. (2001). Staging Queues in Material Handling and Transportation Systems. Proceedings of the 33 rd Winter Simulation Conference, pages 1104–1108, IEEE Computer Society.

    Google Scholar 

  • Guenov, M. and Raeside, R. (1992). Zone shapes in class based storage and multicommand order picking when storage/retrieval machines are used. European Journal of Operational Research, 58:37–47.

    Article  Google Scholar 

  • Ha, J.-W. and Hwang, H. (1994). Class-based storage assignment policy in carousel system. Computers & Industrial Engineering, 26:489–499.

    Article  Google Scholar 

  • Hackman, S.T. and Rosenblatt, M.J. (1990). Allocating items to an automated storage and retrieval system. IIE Transactions, 22:7–14.

    Article  Google Scholar 

  • Hall, N.G. (1988). A multi-item eoq model with inventory cycle balancing. Naval Research Logistics, 35:319–325.

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, R.W. (1993). Distance approximations for routing manual pickers in a warehouse. IIE Transactions, 25:76–87.

    Article  Google Scholar 

  • Han, M.-H., McGinnis, L.F., Shieh, J.S., and White, J.A. (1987). On sequencing retrievals in automated storage/retrieval systems. IIE Transactions, 19:56–66.

    Article  Google Scholar 

  • Harmatuck, D.J. (1976). A comparison of two approaches to stock location. The Logistics and Transportation Review, 12:282–284.

    Google Scholar 

  • Hausman, W.H., Schwarz, L.B., and Graves, S.C. (1976). Optimal storage assignment in automatic warehousing systems. Management Science, 22:629–638.

    Article  Google Scholar 

  • Herron, D.P. and Hawley, R.L. (1969). Establishing the optimum inventory size and stocking policy for a warehouse. AIIE Transactions, 1:75–80.

    Google Scholar 

  • Heskett, J.L. (1963). Cube-per-order index — a key to warehouse stock location. Transportation and Distribution Management, 3:27–31.

    Google Scholar 

  • Hodgson, T.J. and Lowe, T.J. (1982). Production lot sizing with material handling cost considerations. IIE Transactions, 14:44–51.

    Google Scholar 

  • Hsieh, S., Hwang, J.-S., and Chou, H.-C. (1998). A Petri-net — based structure for AS/RS operation modelling. International Journal of Production Research, 36:3323–3346.

    Article  Google Scholar 

  • Hwang, H., Baek, W., and Lee, M.K. (1988). Clustering algorithms for order picking in an automated storage and retrieved system. International Journal of Production Research, 26:189–201.

    Article  Google Scholar 

  • Hwang, H. and Ko, C.S. (1988). A study or multi-aisle system served by a single storage/retrieval machine. International Journal of Production Research, 26:1727–1737.

    Article  Google Scholar 

  • Hwang, H. and Lee, S.B. (1990). Travel-time mnodels considering the operating characteristics of the storage and retrieval machine. International Journal of Production Research, 28:1779–1789.

    Article  Google Scholar 

  • Hwang, H., Lee, Y.K., Lee, S., and Ko, C.S. (2001). Routing policies in an order picking operation. Proceedings of the 16th International Conference on Production Research.

    Google Scholar 

  • Hwang, H. and Lim, J.M. (1993). Deriving an optimal dwell point of the storage/retrieval machine in an automated storage/retrieval system. International Journal of Production Research, 31:2591–2602.

    Article  Google Scholar 

  • Hwang, H. and Song, J.Y. (1993). Sequencing picking operations and travel time models for man-on-board storage and retrieval warehousing system. International Journal of Production Economics, 29:75–88.

    Article  Google Scholar 

  • Jackson, J.R. (1957). Networks of waiting lines. Operations Research, 5:518–521.

    Article  MathSciNet  Google Scholar 

  • Jaikumar, R. and Solomon, M.M. (1990). Dynamic operational policies in an automated warehouse. IIE Transactions, 22:370–376.

    Article  Google Scholar 

  • Jarvis, J.M. and McDowell, E.D. (1991). Optimal product layout in an order picking warehouse. IIE Transactions, 23:93–102.

    Article  Google Scholar 

  • Jewkes, E., Lee, C., and Vickson, R. (2004). Product location, allocation and server home base location for an order picking line with multiple servers. Computers & Operations Research, 31:623–636.

    Article  Google Scholar 

  • Jucker, J.V., Carlson, R.C., and Kropp, D.H. (1982). The simultaneous determination of plant and leased warehouse capacities for a firm facing uncertain demand in several regions. IIE Transactions, 14:99–108.

    Google Scholar 

  • Kanet, J.J. and Ramirez, R.G. (1986). Optimal stock picking decisions in automatic storage and retrieval systems. OMEGA International Journal of Management Science, 14:234–239.

    Article  Google Scholar 

  • Kim, B.-I., Graves, R.J., Heragu, S.S., and St-Onge, A. (2002). Intelligent agent modeling of an industrial warehousing problem. IIE Transactions, 34:601–612.

    Article  Google Scholar 

  • Kim, J. and Seidmann, A. (1990). A framework for the exact evaluation of expected cycle times in automated storage systems with full-turnover item allocation and random service requests. Computers & Industrial Engineering, 18:601–612.

    Article  Google Scholar 

  • Kim, K.H. (1993). A joint determination of storage locations and space requirements for correlated items in a miniload automated storage-retrieval system. International Journal of Production Research, 31:2649–2659.

    Article  Google Scholar 

  • Knapp, G.M. and Wang, H.-P. (1992). Modeling of automated storage/retrieval systems using Petri nets. Journal of Manufacturing Systems, 11:20–29.

    Article  Google Scholar 

  • Koh, S.G., Kim, B.S., and Kim, B.N. (2002). Travel time model for the warehousing system with a tower crane S/R machine. Computers & Industrial Engineering, 43:495–507.

    Article  Google Scholar 

  • Kouvelis, P. and Papanicolaou, V. (1995). Expected travel time and optimal boundary formulas for a two-class-based automated storage/retrieval system. International Journal of Production Research, 33:2889–2905.

    Article  Google Scholar 

  • Larson, T.N., March, H., and Kusiak, A. (1997). A heuristic approach to warehouse layout with class-based storage. IIE Transactions, 29:337–348.

    Article  Google Scholar 

  • Lee, M.-K. and Kim, S.-Y. (1995). Scheduling of storage/retrieval orders under a just-in-time environment. International Journal of Production Research, 33:3331–3348.

    Article  Google Scholar 

  • Lee, H.F. and Schaefer, S.K. (1996). Retrieval sequencing for unit-load automated storage and retrieval systems with multiple openings. International Journal of Production Research, 34:2943–2962.

    Article  Google Scholar 

  • Levy, J. (1974). The optimal size of a storage facility. Naval Research Logistics Quarterly, 21:319–326.

    Article  MATH  Google Scholar 

  • Lin, S.-C. and Wang, H.-P.B. (1995). Modelling an automated storage and retrieval system using Petri nets. International Journal of Production Research, 33:237–260.

    Article  Google Scholar 

  • Linn, R.J. and Wysk, R.A. (1987). An analysis of control strategies for automated storage and retrieval systems. INFOR, 25:66–83.

    Google Scholar 

  • Linn, R.J. and Wysk, R.A. (1990). An expert system framework for automated storage and retrieval system control. Computers & Industrial Engineering, 18:37–48.

    Article  Google Scholar 

  • Lowe, T.J., Francis, R.L., and Reinhardt, E.W. (1979). A greedy network flow algorithm for a warehouse leasing problem. AIIE Transactions, 11:170–182.

    Google Scholar 

  • Malette, A.J. and Francis, R.L. (1972). Ceneralized assignment approach to the optimal facility layout. AIIE Transactions, 4:144–147.

    Google Scholar 

  • Malmborg, C.J. (1994). A heuristic model for simultaneous storage space allocation and block layout planning. International Journal of Production Research, 32:517–530.

    Article  MATH  Google Scholar 

  • Malmborg, C.J. (1995). Optimization of cube-per-order index warehouse layouts with zoning constraints. International Journal of Production Research, 33:465–482.

    Article  MATH  Google Scholar 

  • Malmborg, C.J. (1996). Storage assignment policy tradeoffs. International Journal of Production Research, 34:363–378.

    Article  MATH  Google Scholar 

  • Malmborg, C.J. and Al-Tassan, K. (2000). An integrated performance model for order-picking systems with randomized storage. Applied Mathematical Modelling, 24:95–111.

    Article  Google Scholar 

  • Malmborg, C.J. and Deutsch, S.J. (1988). A stock location model for dual address order picking systems. IIE Transactions, 20:44–52.

    Article  Google Scholar 

  • Malmborg, C.J. and Krishnakumar, B. (1987). On the optimality of the cube per order index for warehouses with dual command cycles. Journal of Material Flow, 4:169–175.

    Google Scholar 

  • Maltz, A. (1994). Outsourcing the warehousing function: Economic and strategic considerations. The Logistics and Transportation Review, 30:245–265.

    Google Scholar 

  • Maltz, A.B. (1992). The relative importance of cost and quality in outsourcing the warehousing function. Journal of Business Logistics, 15:45–62.

    Google Scholar 

  • Marsh, W.H. (1979). Elements of block storage design. International Journal of Production Research, 4:377–394.

    Google Scholar 

  • Mason, S.J., Ribera, P.M., Farris, J.A., and Kirk, R.G. (2003). Integrating the warehousing and transportation functions of the supply chain. Transportation Research Part E: Logistics and Transportation Review, 39:141–159.

    Article  Google Scholar 

  • Meller, R.D. (1997). Optimal order-to-lane assignments in an order accumulation/sortation system. IIE Transactions, 29:293–301.

    Article  Google Scholar 

  • Montulet, P., Langevin, A., and Riopel, D. (1997). Le problème de l'optimisation de l'entreposage partagé: méthodes exacte et heuristique. INFOR, 35:138–153.

    Google Scholar 

  • Montulet, P., Langevin, A., and Riopel, D. (1998). Minimizing the peak load: An alternate objective for dedicated storage policies. International Journal of Production Research, 36:1369–1385.

    Article  Google Scholar 

  • Moon-Kyu, L. (1992). A storage assignment policy in a man-on-board automated storage/retrieval system. International Journal of Production Research, 30:2281–2292.

    Article  Google Scholar 

  • Morabito, R. and Morales, S. (1998). A Simple and effective recursive procedure for the manufacturer's pallet loading problem. Journal of the Operational Research Society, 49:819–828.

    Article  Google Scholar 

  • Muralidharan, B., Linn, R.J., and Pandit, R. (1995). Shuffling heuristics for the storage location assignment in AS/RS. International Journal of Production Research, 33:1661–1672.

    Article  Google Scholar 

  • Pan, C.-H. and Liu, S.-Y. (1995). A comparative study of order batching algorithms. OMEGA International Journal of Management Science, 23:691–700.

    Article  Google Scholar 

  • Pan, C.-H. and Wang, C.-H. (1996). A framework for the dual command cycle travel time model in automated warehousing systems. International Journal of Production Research, 34:2099–2117.

    Article  Google Scholar 

  • Park, Y.H. and Webster, D.B. (1989a). Modelling of three-dimensional warehouse systems. International Journal of Production Research, 27:985–1003.

    Article  Google Scholar 

  • Park, Y.H. and Webster, (1989b). Design of class-based storage racks for minimizing travel time in three-dimensional storage system. International Journal of Production Research, 27:1589–1601.

    Article  Google Scholar 

  • Petersen II, C.G. (1997). An evaluation of order picking routeing policies. International Journal of Operations and Production Management, 17:1098–1111.

    Article  Google Scholar 

  • Petersen II, C.G. (1999). The impact of routing and storage policies on warehouse efficiency. International Journal of Operations and Production Management, 19:1053–1064.

    Article  Google Scholar 

  • Pliskin, J.S. and Dori, D. (1982). Ranking alternative warehouse area assignments: A multiattribute approach. IIE Transactions, 14:19–26.

    Google Scholar 

  • Racine, N. (2000). Optimisation du prélèvement des commandes dans un centre de distribution. Master's project report, Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal.

    Google Scholar 

  • Randhawa, S.U. and Shroff, R. (1995). Simulation-based design evaluation of unit load automated storage/retrieval systems. Computers & Industrial Engineering, 28:71–79.

    Article  Google Scholar 

  • Rao, M.R. (1976). Optimal capacity expansion with inventory. Operations Research, 24:291–300.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Ratliff, H.D. and Rosenthal, A.S. (1983). Order picking in a rectangular warehouse: A solvable case of the traveling salesman problem. Operations Research, 31:507–521.

    Article  Google Scholar 

  • Riaz Khan, M. (1984). An efficiency measurement model for a computerized warehousing system. International Journal of Production Research, 22:443–452.

    Article  Google Scholar 

  • Roodbergen, K.J. and de Koster, R. (2001a). Routing methods for warehouses with multiple cross aisles. International Journal of Production Research, 39:1865–1883.

    Article  Google Scholar 

  • Roodbergen, K.J. and de Koster, R. (2001b). Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133:32–43.

    Article  MathSciNet  Google Scholar 

  • Rosenblatt, M.J. and Eynan, A. (1989). Deriving the optimal boundaries for class-based automatic storage/retrieval systems. Management Science, 35:1519–1524.

    Article  Google Scholar 

  • Rosenblatt, M.J. and Roll, Y. (1988). Warehouse capacity in a stochastic environment. International Journal of Production Research, 26:1847–1851.

    Article  Google Scholar 

  • Rosenblatt, M.J., Roll, Y., and Zyser, V. (1993). A combined optimization and simulation approach for designing automated storage/retrieval systems. IIE Transactions, 25:40–50.

    Article  Google Scholar 

  • Rosenblatt, M.J. and Rothblum, U.G. (1990). On the Single resource capacity problem for multi-item inventory systems. Operations Research, 38:686–693.

    Article  MathSciNet  Google Scholar 

  • Rosenwein, M.B. (1994). An application of cluster analysis to the problem of locating items within a warehouse. IIE Transactions, 26:101–103.

    Article  Google Scholar 

  • Rosenwein, M.B. (1996). A comparison of heuristics for the problcm of batching orders for warehouse selection. International Journal of Production Research, 34:657–664.

    Article  MATH  Google Scholar 

  • Rouwenhorst, B., Reuter, B., Stockrahm, V., Van Houtum, G.J., Mantel, R.J., and Zijm, W.H.M. (2000). Warehouse design and control: Framework and literature review. European Journal of Operational Research, 122:515–533.

    Article  Google Scholar 

  • Ruben, R.A. and Jacobs, F.R. (1999). Batch construction heuristics and storage assignment strategies for walk/ride and pick systems. Management Science, 45:575–596.

    Article  Google Scholar 

  • Sadik, M., Landers, T.L. and Taylor, G.D. (1996). An assignment algorithm for dynamic picking systems. IIE Transactions, 28:607–616.

    Google Scholar 

  • Sarker, B.R. and Babu, P.S. (1995). Travel time models in automated storage/retrieval systems: A critical review. International Journal of Production Economics, 40:173–184.

    Article  Google Scholar 

  • Scheithauer, G. (1996). The G4-heuristic for the pallet loading problem. Journal of the Operational Research Society, 47:511–522.

    MATH  Google Scholar 

  • Seidmann, A. (1988). Intelligent control schemes for automated storage and retrieval systems. International Journal of Production Research, 26:931–952.

    Article  Google Scholar 

  • Steudal, H.J. (1979). Generating pallet loading patterns: A special case of the two-dimensional cutting stock problem. Management Science, 25:997–1004.

    Article  Google Scholar 

  • Sung, C.S. and Han, Y.H. (1992). Determination of automated storage/retrieval system size. Engineering Optimization, 19:269–2862.

    Article  Google Scholar 

  • Taboun, S.M. and Bhole, S.D. (1993). A simulator for an automated warehousing system. Computers & Industrial Engineering, 24:281–290.

    Article  Google Scholar 

  • Thonemann, U.W. and Brandeau, M.L. (1998). Note. Optimal storage assignment policies for automated storage and retrieval systems with stochastic demands. Management Science, 44:142–148.

    Article  Google Scholar 

  • Tompkins, J.A. White, Bozer, Y.A., and Tanchoco, J.M.A. (2003). Facilities Planning. John Wiley & Sons Inc., New York.

    Google Scholar 

  • Tsai, R.D., Malstrom, E.M., and Meeks, H.D. (1988). A two-dimensional palletizing procedure for warehouse loading operations. IIE Transactions, 20:418–425.

    Article  Google Scholar 

  • Van den Berg, J.P. (1996). Multiple order pick sequencing in a carousel system: A solvable case of the rural postman problem. Journal of the Operational Research Society, 47:1504–1515.

    Article  MATH  Google Scholar 

  • Van den Berg, J.P., Sharp, G.P., Gademann, A.J.R.M., and Pochet, Y. (1998). Forward-reserve allocation in a warehouse with unit-load replenishments. European Journal of Operational Research, 111:98–113.

    Article  Google Scholar 

  • Van den Berg, J.P. and Zijm, W.H.M. (1999). Models for warehouse management: Classification and examples. International Journal of Production Economics, 59:519–528.

    Article  Google Scholar 

  • Van Oudheusden, D.J., Tzen, Y.J., and Ko, H. (1988). Improving storage and order picking in a person-on-board AS/R system. Engineering Costs and Production Economics, 13:273–283.

    Article  Google Scholar 

  • Van Oudheusden, D.L. and Zhu, W. (1992). Storage layout of AS/RS racks based on recurrent orders. European Journal of Operational Research, 58:48–56.

    Article  Google Scholar 

  • Vaughan, T.S. and Petersen, C.G. (1999). The effect of warehouse cross-aisles on order picking efficiency. International Journal of Production Research, 37:881–897.

    Article  Google Scholar 

  • White, J.A. and Francis, R.L. (1971). Normative models for some warehouse sizing problems. AIIE Transactions, 9:185–190.

    Google Scholar 

  • Wilson, H.C. (1977). Order quantity, product popularity, and the location of stock in a warehouse. AIIE Transactions, 9:230–237.

    Google Scholar 

  • Yoon, C.S. and Sharp, G.P. (1996). A structured procedure for analysis and design of order pick systems. IIE Transactions, 28:379–389.

    Article  Google Scholar 

  • Zoller, K. (1977). Deterministic multi-item inventory systems with limited capacity. Management Science, 24:451–455.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Cormier, G. (2005). Operational Research Methods for Efficient Warehousing. In: Langevin, A., Riopel, D. (eds) Logistics Systems: Design and Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-387-24977-X_4

Download citation

Publish with us

Policies and ethics