Skip to main content

Recent Results for Linear Time Series Models with Non Independent Innovations

  • Chapter
Book cover Statistical Modeling and Analysis for Complex Data Problems

Abstract

In this paper, we provide a review of some recent results for ARMA models with uncorrelated but non independent errors. The standard so-called Box-Jenkins methodology rests on the errors independence. When the errors are suspected to be non independent, which is often the case in real situations, this methodology needs to be adapted. We study in detail the main steps of this methodology in the above-mentioned framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D.W.K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59:817–858.

    MATH  MathSciNet  Google Scholar 

  • Béguin, J.M., Gouriéroux, C., and Monfort, A. (1980). Identification of a mixed autoregressive-moving average process: The corner method. In: Anderson, O.D. (ed.), Time Series, pages 423–436, North-Holland, Amsterdam.

    Google Scholar 

  • Berk, K.N. (1974). Consistent autoregressive spectral estimates. The Annals of Statistics, 2:489–502.

    MATH  MathSciNet  Google Scholar 

  • Berlinet, A. (1984). Estimating the degrees of an ARMA model. Compstat Lectures, 3:61–94.

    MATH  MathSciNet  Google Scholar 

  • Berlinet, A. and Francq, C. (1997). On Bartlett's Formula for nonlinear processes. Journal of Time Series Analysis, 18:535–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Berlinet, A. and Francq, C. (1999). Estimation des covariances entre autocovariances empiriques de processus multivariés non linéaires. The Canadian Journal of Statistics, 27:1–22.

    MathSciNet  Google Scholar 

  • Billingsley, P. (1995). Probability and Measure. Wiley, New York.

    MATH  Google Scholar 

  • Box, G.E.P. and Pierce, D.A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 65:1509–1526.

    Article  MathSciNet  MATH  Google Scholar 

  • Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods. Springer-Verlag, New York.

    Google Scholar 

  • Broze, L., Francq, C., and Zakoïan, J-M. (2002). Efficient use of higher-lag autocorrelations for estimating autoregressive processes, Journal of Time Series Analysis, 23:287–312.

    Article  MathSciNet  MATH  Google Scholar 

  • Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory, 18:17–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Dickey, D.A. and Fuller, W.A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74:427–431.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunsmuir, W. and Hannan, E.J. (1976). Vector linear time series models. Advances in Applied Probability, 8:339–364.

    Article  MathSciNet  MATH  Google Scholar 

  • Francq, C. and Zakoïan, J-M. (1998a). Estimating linear representations of nonlinear processes. Journal of Statistical Planning and Inference, 68:145–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Francq, C. and Zakoïan, J.-M. (1998b). Estimating the order of weak ARMA models. Prague Stochastic'98 Proceedings, 1:165–168.

    Google Scholar 

  • Francq, C. and Zakoïan, J.-M. (2000). Covariance matrix estimation for estimators of mixing Wold's ARMA. Journal of Statistical Planning and Inference, 83:369–394.

    Article  MathSciNet  MATH  Google Scholar 

  • Francq, C. and Zakoïan, J.-M. (2003). The L2-structures of standard and switching-regime GARCH models. Working document.

    Google Scholar 

  • Francq, C., Roy R., and Zakoïan, J.-M. (2004). Diagnostic checking in ARMA models with uncorrelated errors. To appear in Journal of the American Statistical Association.

    Google Scholar 

  • Glasbey, C.A. (1982). Generalization of partial autocorrelation useful in identifying ARMA models. Technometrics, 24:223–228.

    Article  Google Scholar 

  • Hannan, E.J. (1973). The asymptotic theory of linear time series models. Journal of Applied Probability, 10:130–145.

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen, B.E. (1992). Consistent covariance matrix estimation for dependent heterogeneous processes. Econometrica, 60:967–972.

    MATH  MathSciNet  Google Scholar 

  • Hansen, L.P. (1982) Large sample properties of generalized method of moments estimators. Econometrica, 50:1029–1054.

    MATH  MathSciNet  Google Scholar 

  • Herrndorf, N. (1984). A functional central limit theorem for weakly dependent sequences of random variables. The Annals of Probability, 12:141–153.

    MATH  MathSciNet  Google Scholar 

  • Imhof, J.P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48:419–426.

    Article  MATH  MathSciNet  Google Scholar 

  • Kokoszka, P.S. and Taqqu, M.S. (1996). Parameter estimation for infinite variance fractional ARIMA. The Annals of Statistics, 24:1880–1913.

    Article  MathSciNet  MATH  Google Scholar 

  • Ljung, G.M. and Box, G.E.P. (1978). On the Measure of lack of fit in time series models. Biometrika, 65:297–303.

    Article  MATH  Google Scholar 

  • Lobato, I.N. (2001). Testing that a dependent process is uncorrelated. Journal of the American Statistical Association, 96:1066–1076.

    Article  MATH  MathSciNet  Google Scholar 

  • Mann, H.B. and Wald, A. (1943). On the statistical treatment of linear stochastic differential equations. Econometrica, 11:173–200.

    MathSciNet  MATH  Google Scholar 

  • Mélard, G. and Roy, R. (1987). On confidence intervals and tests for autocorrelations. Computational Statistics and Data Analysis, 5:31–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Mélard, G., Paesmans, M., and Roy, R. (1991). Consistent estimation of the asymptotic covariance structure of multivariate serial correlations. Journal of Time Series Analysis, 12:351–361.

    MathSciNet  MATH  Google Scholar 

  • Mikosch, T., Gadrich, T., Klüppelberg, C., and Adler, R.J. (1995). Parameter estimation for ARMA models with infinite variance innovations. The Annals of Statistics, 23:305–326.

    MathSciNet  MATH  Google Scholar 

  • Pham, D.T. (1986). The mixing property of bilinear and generalized random coefficient autoregressive models. Stochastic Processes and their Applications, 23:291–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Rissanen, J. and Caines, P.E. (1979). The strong consistency of maximum likelihood estimators for ARMA processes. The Annals of Statistics, 7:297–315.

    MathSciNet  MATH  Google Scholar 

  • Romano, J.L. and Thombs, L.A. (1996). Inference for autocorrelations under weak assumptions. Journal of the American Statistical Association, 91:590–600.

    Article  MathSciNet  MATH  Google Scholar 

  • Roy, R. (1989). Asymptotic covariance structure of serial correlations in multivariate time series. Biometrika, 76:824–827.

    Article  MATH  MathSciNet  Google Scholar 

  • Tiao, G.C. and Tsay, R.S. (1983). Consistency properties of least squares estimates of autoregressive parameters in ARMA models. The Annals of Statistics, 11:856–871.

    MathSciNet  MATH  Google Scholar 

  • Tong, H. (1990). Non-linear Time Series: A Dynamical System Approach. Clarendon Press Oxford.

    Google Scholar 

  • Walker, A.M. (1964). Asymptotic properties of least squares estimates of the parameters of the spectrum of a stationary non-deterministic time series. Journal of the Australian Mathematical Society, 4:363–384.

    Article  MATH  Google Scholar 

  • Wold, H. (1938). A Study in the Analysis of Stationary Time Series. Almqvist and Wiksell, Stockholm.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Francq, C., Zakoïan, JM. (2005). Recent Results for Linear Time Series Models with Non Independent Innovations. In: Duchesne, P., RÉMillard, B. (eds) Statistical Modeling and Analysis for Complex Data Problems. Springer, Boston, MA. https://doi.org/10.1007/0-387-24555-3_12

Download citation

Publish with us

Policies and ethics