Skip to main content

Computational Methods for Predicting Protein-Protein Interactions

  • Chapter
Proteomics and Protein-Protein Interactions

Part of the book series: Protein Reviews ((PRON,volume 3))

Abstract

Protein-protein interactions perform an integral role in a diverse range of cellular and extracellular processes. These interactions provide a means for cells to communicate both internally and externally; they facilitate the anabolic and catabolic reactions of metabolism; they are important for transcriptional and translational control; and they are also important in maintaining cell structure. These examples are by no means exhaustive, however. Understanding these protein-protein interactions is a very important area of research in light of their global implications. Moreover, the knowledge of how to predict these interactions would be extremely useful and could be exploited to block these interactions as a therapeutic intervention, for example, and also to implicate novel functional interactions. However, prediction of these interactions is by no means trivial, as many layers of complexity must be considered, but without any definitive rules that can be applied. This chapter highlights some of these complexities, describes available databases and repositories of protein-protein interactions, and discusses some of the main methods that are currently used to predict these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bader, G.D., Betel, D., and Hogue, C.W. (2003). BIND: the biomolecular interaction network database. Nucleic Acids Res. 31:248–250.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F., Brice, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112:535.

    Article  PubMed  CAS  Google Scholar 

  • Betts, M.J., and Sternberg, M.J. (1999). An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Eng. 12:271–283.

    Article  PubMed  CAS  Google Scholar 

  • Blatch, G.L., and Lassle, M. (1999). The tetratricopeptide repeat: a structural motif mediating proteinprotein interactions. Bioessays 21:932–939.

    Article  PubMed  CAS  Google Scholar 

  • Bogan, A.A., and Thorn, K.S. (1998). Atonomy of hot spots in protein interfaces. J. Mol. Biol. 280:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Camacho, C.J., Weng, Z., Vadja, S., and DeLisi, C. (1999). Free energy landscapes of encounter complexes in protein-protein association. Biophys. J. 76:1166–1178.

    PubMed  CAS  Google Scholar 

  • Chakrabarti, P., Janin, J. (2002). Dissecting protein-protein recognition sites. Proteins. 47:334–43.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R., and Weng, Z. (2002). Docking unbound proteins using shape complementarity, desolvation and electrostatics. Proteins 47:281–294.

    Article  PubMed  CAS  Google Scholar 

  • Chothia, C., and Janin, J. (1975). Principles of protein-protein recognition. Nature 256:705–708.

    Article  PubMed  CAS  Google Scholar 

  • Clackson, T., and Wells, J.A. (1995). A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F.E., and Goh, C.S. (2002). Co-evolutionary analysis reveals insights into protein-protein interactions. J. Mol. Biol. 324: 177–192.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, M.L. (1983). Analytical molecular surface calculation. J. Appl. Crystallogr. 16:548–558.

    Article  CAS  Google Scholar 

  • Covell, D.G., and Wallqvist, A. (1997). Analysis of protein-protein interactions and the effects of amino acid mutations on their energetics. The importance of water molecules in the binding epitope. J. Mol. Biol. 269:281–297.

    Article  PubMed  CAS  Google Scholar 

  • Decanniere, K., Transue, T.R., Desmyter, A., Maes, D., Muyldermans, S., and Wyns, L. (2001). Degenerate interfaces in antigen-antibody complexes. J. Mol. Biol. 313:473–478.

    Article  PubMed  CAS  Google Scholar 

  • DeLano, W.L. (2002). Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol. 12:14–20.

    Article  PubMed  CAS  Google Scholar 

  • Elcock, A.H. (2001). Prediction of functionally important residues based solely on the computed energetics of protein structure. J. Mol. Biol. 312:885–896.

    Article  PubMed  CAS  Google Scholar 

  • Elcock, A.H., and McCammon, A. (2001). Identification of oligomerisation states by analysis of interface conservation. Proc. Natl. Acad. Sci. 98:2990–2994.

    Article  PubMed  CAS  Google Scholar 

  • Fanning, A.S., and Anderson, J.M. (1996). Protein-protein interactions: PDZ domain networks. Curr. Biol. 6:1385–1388.

    Article  PubMed  CAS  Google Scholar 

  • Fariselli, P., Olmea, O., Valencia, A., and Casadio, R. (2001). Prediction of contact maps with neural networks and correlated mutations. Protein Eng. 14:835–845.

    Article  PubMed  CAS  Google Scholar 

  • Fariselli, P., Pasos, F., Valencia, A., and Casadio, R. (2002). Prediction of protein-protein interaction sites in heterocomplexes with neural networks. Eur. J. Biochem. 269:1356–1361.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, S., and Verma, C.S. (1999). Binding of buried structural water increases the flexibility of proteins. Proc. Natl. Acad. Sci. 96:9613–9615.

    Article  PubMed  CAS  Google Scholar 

  • Gabb, H.A., Jackson, R.M., and Sternberg, M.J.E. (1997). Modelling protein-protein docking using shape complementarity, electrodtatics and biochemical information. J. Mol. Biol. 272:106–120.

    Article  PubMed  CAS  Google Scholar 

  • Gee, S.H., Quenneville, S., Lombardo, C.R., and Chabot, J. (2000). Single-amino acid substitutions alter the specificity and affinity of PDZ domains for their ligands. Biochemistry 39:14638–14646.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, F., Steinberg, D.M., Vasker I.A., and Ben-Tal N. (2001). Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 43:89–102.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F.E. and Goh, C. (2002). Co-evolutionary analysis reveals insights into protein-protein interactions. J. Mol. Biol. 324:177–192.

    Article  PubMed  CAS  Google Scholar 

  • Halperin, I., Ma, B., Wolfson, H., and Nussinov, R. (2002). Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47: 409–443.

    Article  PubMed  CAS  Google Scholar 

  • Hendsch, Z.S., and Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 3:211–226.

    Article  PubMed  CAS  Google Scholar 

  • Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit, H., Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D., Apweiler, R. (2004). Int Act: an open source molecular interaction database. Nucleic Acids Res: 32:D452–455.

    Article  PubMed  CAS  Google Scholar 

  • Hood, L., and Galas, D. (2003). The digital code of DNA. Nature 421:444–448.

    Article  PubMed  CAS  Google Scholar 

  • Hu Z., Ma, B., Wolfson, H., and Nussinov, R. (2000). Conservation of polar residues as hot spots at protein interfaces. Proteins 39:331–342.

    Article  PubMed  CAS  Google Scholar 

  • Huang, K., Lu, W., Anderson, S., Laskowski, M. Jr., and James, M.N. (1995). Water molecules participate in protease-inhibitor interactions. Protein Sci. 4:1985–1997.

    PubMed  CAS  Google Scholar 

  • Hubbard, S.J., and Argos, P. (1994). Cavities and packing at protein interfaces. Protein Sci. 3:2194–2206.

    PubMed  CAS  Google Scholar 

  • Jackson, R.M. (1999). Comparison of protein-protein interactions in serine-protease and antibody-antigen complexes: implications for the protein docking problem. Protein Sci. 8:603–613.

    PubMed  CAS  Google Scholar 

  • Janin, J. (1995). Elusive affinities. Proteins 21:30–39.

    Article  PubMed  CAS  Google Scholar 

  • Janin, J. (1997). The kinetics of protein-protein recognition. Proteins 28:153–161.

    Article  PubMed  CAS  Google Scholar 

  • Janin, J. (1999). Wet and dry interfaces: the role of solvent in protein-protein and protein-DNA interactions. Struct. Fold Des. 7:R277–279.

    Article  CAS  Google Scholar 

  • Janin, J., and Chothia, C. (1990). The structure of protein-protein recognition sites. J. Biol. Chem. 265:16027–16030.

    PubMed  CAS  Google Scholar 

  • Janin and Rodier (1995) Protein-protein interaction at crystal contacts. Proteins 4: 580–587.

    Article  Google Scholar 

  • Jiang, L., and Lai, L. (2002). CH-O hydrogen bonds at protein-protein interfaces. J. Biol. Chem. 277:37732–37740.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J.M., and Church, G.M. (2000). Predicting ligand-binding function in families of bacterial receptors. Proc. Natl. Acad. Sci. 97:3965–3970.

    Article  PubMed  CAS  Google Scholar 

  • Jones, S., and Thornton, J.M. (1996). Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Jones, S., Martin, A., and Thornton, J.M. (2000). Protein domain interfaces: characterization and comparison with oligomeric protein interfaces. Protein Eng. 13:77–82.

    Article  PubMed  CAS  Google Scholar 

  • Kortemme, T., and Baker, D. (2002). A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl. Acad. Sci. USA 99:14116–14121.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, T.A., Olson, A.J., and Goodsell, D.S. (1998). Morphology of protein-protein interfaces. Structure 6:421–427.

    Article  PubMed  CAS  Google Scholar 

  • Laskowski, R.A. (1995). SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular surfaces. J. Mol. Graph. 13:323–330.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, M.C., and Colman, P.M. (1993). Shape complementarity at protein-protein interfaces. J. Mol. Biol. 234:946–950.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L.P., and Tidor, B. (2001). Barstar is electrostatically optomoised for tight binding to barstar. Nat. Struct. Biol. 8:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Lichtarge, O., Bourne, H.R., and Cohen, F.E. (1996). An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257:342–358.

    Article  PubMed  CAS  Google Scholar 

  • Noskov, S.Y. and Lim, C., (2001). Free energy decomposition of protein-protein interactions. Biophys. J. 81:737–750.

    PubMed  CAS  Google Scholar 

  • Lo Conte, L., Chothia, C., and Janin, J. (1999). The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285:2177–2198.

    Article  PubMed  Google Scholar 

  • Ma, X.H., Wang, C.X. and Li, C.H. (2002). A fast empirical approach to binding free energy calculations based on protein interface information. Prot Eng. 15:677–681.

    Article  CAS  Google Scholar 

  • Mandell, J.G., Roberts, V.A., Pique, M.E., Kotlovyi, V., Mitchell, J.C., Nelson, E., Tsigelny, I., and Ten Eyck, L.F. (2001). Protein electrostatics using continuum electrostatics and geometric fit. Protein Eng. 14:105–113.

    Article  PubMed  CAS  Google Scholar 

  • Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., and Eisenberg, D. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science 285:751–753.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, J.M., Kowalski, K., Liew, C.K., Sharpe, B.K., Fox, A.H., Crossley, M., and Mackay J.P. (2000). A class of zinc fingers involved in protein-protein interactions. Eur J Biochemistry. 267:1030–1038.

    Article  CAS  Google Scholar 

  • McCoy, A.J., Chandana Epa, V., and Colman, P.M. (1997). Electrostatic complementarity at protein-protein interfaces. J. Mol. Biol. 268:570–584.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, I.K., and Thornton, J.M. (1994). Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238:777–793.

    Article  PubMed  CAS  Google Scholar 

  • Nooren, I.M., and Thornton, J.M. (2003). Structural classification and functional significance of transient protein-protein interactions. J. Mol. Biol. 325:991–1081.

    Article  PubMed  CAS  Google Scholar 

  • Norel, R., Lin, S.L., Wolfson, H.J., and Nussinov, R. (1994). Shape complementarity at protein-protein interfaces. Biopolymers 34:933–940.

    Article  PubMed  CAS  Google Scholar 

  • Norel, R., Lin, S.L., Wolfson, H.J., and Nussinov, R. (1995). Molecular surface complementarity at proteinprotein interfaces. The critical role played by surface normals at well placed, sparse, points in docking. J. Mol. Biol. 252:263–273.

    Article  PubMed  CAS  Google Scholar 

  • Norel, R., Petrey, D., Wolfson, H.J., and Nussinov, R. (1999). Examination of shape complementarity in docking of unbound proteins. Proteins 36:307–317.

    Article  PubMed  CAS  Google Scholar 

  • Noskov, S.Y., and Lim, C. (2001). Free energy decomposition of protein-protein interactions. Biophys. J. 81:737–750.

    PubMed  CAS  Google Scholar 

  • Pazos, F., and Valencia, A. (2001). Similiarity of phylogenetic trees as indicator off protein-protein interaction. Protein Eng. 14:609–614.

    Article  PubMed  CAS  Google Scholar 

  • Pazos, F., Helmer-Citterich, M., Ausiello, G., and Valencia, A. (1997). Correlated mutations contain information about protein-protein interaction. J. Mol. Biol. 271:511–523.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., and Yeates, T.O. (1999). Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96:4285–4288.

    Article  PubMed  CAS  Google Scholar 

  • Ponstingl, H., Henrick, K., Thornton, J.M. (2000). Discriminating between homodimeric and monomeric proteins in the crystalline state. 41:47–57.

    CAS  Google Scholar 

  • Preißner, R., Goede, A., and Frömmel, C. (1999). Homonyms and synonyms in the Dictionary of Interfaces in Proteins (DIP). Bioinformatics 15:832–836.

    Article  PubMed  Google Scholar 

  • Robert, C.H., and Janin, J. (1998). A soft, mean-field potential derived from crystal contacts for predicting protein-protein interactions. J. Mol. Biol. 283:1037–1047.

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld, R., Vajda, S., and DeLisi, C. (1995). Flexible docking and design. Annu. Rev. Biophys. 24:677–700.

    Article  CAS  Google Scholar 

  • Sheinerman, F., and Honig, B. (2002). On the role of electrostatic interactions in the design of protein-protein interfaces. J. Mol. Biol. 318:161–177.

    Article  PubMed  CAS  Google Scholar 

  • Sheinerman, F.B., Norel, R., and Honig, B. (2000). Electrostatic aspects of protein-protein interactions. Curr. Opini. Struct. Biol. 10:153–159.

    Article  CAS  Google Scholar 

  • Smith, G.R., and Sternberg, M.J., (2002). Prediction of protein-protein interactions by docking. Methods 12:28–35.

    Google Scholar 

  • Sprinzak, E., and Margalit, H. (2001). Correlated sequence-signatures as markers of protein-protein interaction. J. Mol. Biol. 311:681–692.

    Article  PubMed  CAS  Google Scholar 

  • Sundberg, E.J., and Mariuzza, R.A. (2000). Luxury accommodations: the expanding of structural plasticity in protein-protein interactions. Structure 8:137–142.

    Article  Google Scholar 

  • Teichmann, S.A. (2002). The constraints protein-protein interactions place on sequence divergence. J. Mol. Biol. 324:399–407.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C.J., and Nussinov, R. (1997). Hydrophobic folding units at protein-protein interfaces. Implications to protein folding and to protein-protein association. Protein Sci. 6:1426–1437.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C.J., Kumar, S., Ma, B. and Nussinov, R. (1999). Folding funnels, binding funnels, and protein function. Protein Science. 8:1181–1190.

    PubMed  CAS  Google Scholar 

  • Tsai, C.J., Lin, S.L., Wolfson, H.J., and Nussinov, R. (1997a). Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci. 6:53–64.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C.J., Xu, D., and Nussinof, R. (1997b). Structural motifs at protein-protein interfaces: protein cores verses two-state and three-state model complexes. Protein Sci. 6:1793–1805.

    PubMed  CAS  Google Scholar 

  • Uetz, P, Giot, L, Cagney, G, Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., Rothberg, J.M. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627.

    Article  PubMed  CAS  Google Scholar 

  • Vakser, I.A., Matar, O.G., and Lam, C.F. (1999). A systematic study of low-resolution recognition in protein-protein complexes. Proc. Natl. Acad. Sci. USA 96:8777–8482.

    Article  Google Scholar 

  • Valdar, W.S. (2002). Scoring residue conservation. Proteins 48:227–241.

    Article  PubMed  CAS  Google Scholar 

  • Valdar, W.S., and Thornton, J.M. (2001a). Conservation helps to identify biologically relevant crystal contacts. J. Mol. Biol. 313:399–416.

    Article  PubMed  CAS  Google Scholar 

  • Valdar, W.S., and Thornton, J.M. (2001b). Protein-protein interfaces: analysis of amino acid conservation in homodimers. Proteins 42:108–124.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, C.K., Buckle, A.M., and Fersht, A.R. (1999). Structural response to mutation at a protein interface. J. Mol. Biol. 286:1487–1506.

    Article  PubMed  CAS  Google Scholar 

  • Venter, J.C., et al. (2001). The sequence of the human genome. Science 291:1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Villar, H.O. and Kauvar, L.M. (1994). Amino acid preferences at protein binding sites. FEBS Lett. 349:125–30.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. (2002). Protein recognition by cell surface receptors: physiological receptors versus virus interactions. Trends Biochem Sci. 27:122–126.

    Article  PubMed  CAS  Google Scholar 

  • Wodak, S.J., and Janin, J. (2002). Structural basis of macromolecular recognition. Adv. Protein Chem. 61:9–73.

    PubMed  Google Scholar 

  • Wright, P.E., and Dyson, H.J. (1999). Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293:321–331.

    Article  PubMed  CAS  Google Scholar 

  • Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., and Eisenberg, D. (2000). DIP: the database of interacting proteins. NAR 28:289–291.

    Article  PubMed  CAS  Google Scholar 

  • Xu, D., Lin, S.L., and Nussinov, R. (1997a). Protein binding versus protein folding: the role of hydrophilic bridges in protein associations. J. Mol. Biol. 265:68–84.

    Article  PubMed  CAS  Google Scholar 

  • Xu, D., Tsai, C.J., and Nussinov, R. (1997b). Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng. 10:999–1012.

    Article  PubMed  CAS  Google Scholar 

  • Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M., and Cesareni, G. (2002). MINT: a Molecular INTeraction database. FEBS Lett. 513:135–140.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H., and Shan, Y. (2001). Prediction of protein interaction sites from sequence profile and residue neighbour list. Proteins 44:336–343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Walker-Taylor, A., Jones, D.T. (2005). Computational Methods for Predicting Protein-Protein Interactions. In: Waksman, G. (eds) Proteomics and Protein-Protein Interactions. Protein Reviews, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-24532-4_5

Download citation

Publish with us

Policies and ethics