Skip to main content

Molecular Recognition in the Immune System

  • Chapter
Proteomics and Protein-Protein Interactions

Part of the book series: Protein Reviews ((PRON,volume 3))

  • 1504 Accesses

Abstract

Antibody and T-cell receptor (TCR) molecules may be regarded as products of a protein engineering system for the generation of a virtually unlimited repertoire of complementary molecular surfaces. This extreme structural heterogeneity is required for recognition of the infinite array of antigenic determinants presented in nature. Here we broadly discuss the structures of antibodies and TCRs as well as their specific recognition of antigen, the binding energetics of these interactions, the structural basis of the antibody maturation and TCR selection processes, limitations to affinity and specificity for antigens, and the role of conformational flexibility in antigen recognition. A final section highlights research results from the burgeoning field of natural killer cell receptor biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackers, G.K., and Smith, F.R. (1985). Effects of site-specific amino acid modification on protein interactions and biological function. Annu. Rev. Biochem. 54: 597–629.

    PubMed  CAS  Google Scholar 

  • Al-Lazikani, B., Lesk, A.M., and Chothia, C. (1997). Standard conformations for the canonical structures of immunoglobulins. J. Mol. Biol. 273:927–948.

    PubMed  CAS  Google Scholar 

  • Al-Lazikani, B., Lesk, A.M., and Chothia, C. (2000). Canonical structures for the hypervariable regions of T cell alphabeta receptors. J. Mol. Biol. 295:979–995.

    PubMed  CAS  Google Scholar 

  • Alam, S.M., Travers, P.J., Wung, J.L., Nasholds, W., Redpath, S., Jameson, S.C., and Gascoigne, N.R. (1996). T-cell-receptor affinity and thymocyte positive selection. Nature 381:616–620.

    PubMed  CAS  Google Scholar 

  • Alam, S.M., Davies, G.M., Lin, C.M., Zal, T., Nasholds, W., Jameson, S.C., Hogquist, K.A., Gascoigne, N.R., and Travers, P.J. (1999). Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. Immunity 10:227–237.

    PubMed  CAS  Google Scholar 

  • Allison, T.J., Winter, C.C., Fournie, J.J., Bonneville, M., and Garboczi, D.N. (2001). Structure of a human gammadelta T-cell antigen receptor. Nature 411:820–824.

    PubMed  CAS  Google Scholar 

  • Amzel, L.M., and Poljak, R.J. (1979). Three-dimensional structure of immunoglobulins. Annu. Rev. Biochem. 48:961–997.

    PubMed  CAS  Google Scholar 

  • Anderson, S.K., Ortaldo, J.R., and McVicar, D.W. (2001). The ever-expanding Ly49 gene family: repertoire and signaling. Immunol. Rev. 181:79–89.

    PubMed  CAS  Google Scholar 

  • Anikeeva, N., Lebedeva, T., Krogsgaard, M., Tetin, S.Y., Martinez-Hackert, E., Kalams, S.A., Davis, M.M., and Sykulev, Y. (2003). Distinct molecular mechanisms account for the specificity of two different T-cell receptors. Biochemistry 42:4709–4716.

    PubMed  CAS  Google Scholar 

  • Baker, B.M., Gagnon, S.J., Biddison, W.E., and Wiley, D.C. (2000). Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13:475–484.

    PubMed  CAS  Google Scholar 

  • Batista, F.D., and Neuberger, M.S. (1998). Affinity dependence of theBcell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8:751–759.

    PubMed  CAS  Google Scholar 

  • Batista, F.D., and Neuberger, M.S. (2000). B cells extract and present immobilized antigen: implications for affinity discrimination. Embo J. 19:513–520.

    PubMed  CAS  Google Scholar 

  • Berthet-Colominas, C., Monaco, S., Novelli, A., Sibai, G., Mallet, F., and Cusack, S. (1999). Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. Embo J. 18:1124–1136.

    PubMed  CAS  Google Scholar 

  • Bhat, T.N., Bentley, G.A., Boulot, G., Greene, M.I., Tello, D., Dall’Acqua, W., Souchon, H., Schwarz, F.P., Mariuzza, R.A., and Poljak, R.J. (1994). Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc. Natl. Acad. Sci. USA 91:1089–1093.

    PubMed  CAS  Google Scholar 

  • Boniface, J.J., Reich, Z., Lyons, D.S., and Davis, M.M. (1999). Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Proc. Natl. Acad. Sci. USA 96:11446–11451.

    PubMed  CAS  Google Scholar 

  • Braden, B.C., Souchon, H., Eisele, J.L., Bentley, G.A., Bhat, T.N., Navaza, J., and Poljak, R.J. (1994). Threedimensional structures of the free and the antigencomplexed Fab from monoclonal anti-lysozyme antibody D44.1. J. Mol. Biol. 243, 767–781.

    PubMed  CAS  Google Scholar 

  • Braden, B.C., Fields, B.A., and Poljak, R.J. (1995). Conservation ofwater molecules in an antibody-antigen interaction. J. Mol. Recognit. 8:317–325.

    PubMed  CAS  Google Scholar 

  • Braden, B.C., Fields, B.A., Ysern, X., Dall’Acqua, W., Goldbaum, F.A., Poljak, R.J., and Mariuzza, R.A. (1996a). Crystal structure of an Fv-Fv idiotope-anti-idiotope complex at 1.9 A resolution. J. Mol. Biol. 264:137–151.

    PubMed  CAS  Google Scholar 

  • Braden, B.C., Fields, B.A., Ysern, X., Goldbaum, F.A., Dall’Acqua, W., Schwarz, F.P., Poljak, R.J., and Mariuzza, R.A. (1996b). Crystal structure of the complex of the variable domain of antibody D1.3 and turkey egg white lysozyme: a novel conformational change in antibody CDR-L3 selects for antigen. J. Mol. Biol. 257:889–894.

    PubMed  CAS  Google Scholar 

  • Braden, B.C., Goldman, E.R., Mariuzza, R.A., and Poljak, R.J. (1998). Anatomy of an antibody molecule: structure, kinetics, thermodynamics and mutational studies of the antilysozyme antibody D1.3. Immunol. Rev. 163:45–57.

    PubMed  CAS  Google Scholar 

  • Bromley, S.K., Burack, W.R., Johnson, K.G., Somersalo, K., Sims, T.N., Sumen, C., Davis, M.M., Shaw, A.S., Allen, P.M., and Dustin, M.L. (2001). The immunological synapse. Annu. Rev. Immunol. 19:375–396.

    PubMed  CAS  Google Scholar 

  • Buslepp, J., Wang, H., Biddison, W.E., Appella, E., and Collins, E.J. (2003). A correlation between TCR Valpha docking on MHC and CD8 dependence: implications for T cell selection. Immunity 19:595–606.

    PubMed  CAS  Google Scholar 

  • Chacko, S., Silverton, E., Kam-Morgan, L., Smith-Gill, S., Cohen, G., and Davies, D. (1995). Structure of an antibody-lysozyme complex unexpected effect of conservative mutation. J. Mol. Biol. 245:261–274.

    PubMed  CAS  Google Scholar 

  • Chersi, A., Galati, R., Ogino, T., Butler, R.H., and Tanigaki, N. (2002). Anti-peptide antibodies that recognize conformational differences of HLA class I intracytoplasmic domains. Hum. Immunol. 63:731–741.

    PubMed  CAS  Google Scholar 

  • Chevalier, B.S., Kortemme, T., Chadsey, M.S., Baker, D., Monnat, R.J., and Stoddard, B.L. (2002). Design, activity, and structure of a highly specific artificial endonuclease. Mol. Cell. 10:895–905.

    PubMed  CAS  Google Scholar 

  • Chitarra, V., Alzari, P.M., Bentley, G.A., Bhat, T.N., Eisele, J.L., Houdusse, A., Lescar, J., Souchon, H., and Poljak, R. J. (1993). Three-dimensional structure of a heteroclitic antigen-antibody cross-reaction complex. Proc. Natl. Acad. Sci. USA 90:7711–7715.

    PubMed  CAS  Google Scholar 

  • Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.R., Spinelli, S., Alzari, P.M. and Poljak, R.J. (1989). Conformations of immunoglobulin hypervariable regions. Nature 342:877–883.

    PubMed  CAS  Google Scholar 

  • Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B., and Winter, G. (1992). Structural repertoire of the human VH segments. J. Mol. Biol. 227:799–817.

    PubMed  CAS  Google Scholar 

  • Clackson, T. and Wells, J.A. (1995). A hot spot of binding energy in a hormonereceptor interface. Science 267:383–386.

    PubMed  CAS  Google Scholar 

  • Conte, L.L., Chothia, C., and Janin, J. (1999). The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285:2177–2198.

    PubMed  Google Scholar 

  • Dall’Acqua, W., Goldman, E.R., Eisenstein, E., and Mariuzza, R.A. (1996). A mutational analysis of the binding of two different proteins to the same antibody. Biochemistry 35:9667–9676.

    PubMed  CAS  Google Scholar 

  • Dall’Acqua, W., Goldman, E.R., Lin, W., Teng, C., Tsuchiya, D., Li, H., Ysern, X., Braden, B.C., Li, Y., Smith-Gill, S.J., and Mariuzza, R.A. (1998). A mutational analysis of binding interactions in an antigen-antibody protein-protein complex. Biochemistry 37:7981–7991.

    PubMed  CAS  Google Scholar 

  • Dam, J., Guan, R., Natarajan, K., Dimasi, N., Chlewicki, L.K., Kranz, D.M., Schuck, P., Margulies, D.H., and Mariuzza, R.A. (2003). Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2K(b). Nat. Immunol. 4:1213–1222.

    PubMed  CAS  Google Scholar 

  • Davis, M.M., Boniface, J.J., Reich, Z., Lyons, D., Hampl, J., Arden, B., and Chien, Y. (1998). Ligand recognition by alpha beta T cell receptors. Annu. Rev. Immunol. 16:523–544.

    PubMed  CAS  Google Scholar 

  • Decanniere, K., Desmyter, A., Lauwereys, M., Ghahroudi, M.A., Muyldermans, S., and Wyns, L. (1999). A single-domain antibody fragment in complex with RNase A: noncanonical loop structures and nanomolar affinity using two CDR loops. Struct. Fold. Des. 7:361–370.

    CAS  Google Scholar 

  • Degano, M., Garcia, K.C., Apostolopoulos, V., Rudolph, M.G., Teyton, L., and Wilson, I.A. (2000). A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12:251–261.

    PubMed  CAS  Google Scholar 

  • De Genst, E., Areskoug, D., Decanniere, K., Muyldermans, S., and Andersson, K. (2002). Kinetic and affinity predictions of a protein-protein interaction using multivariate experimental design. J. Biol. Chem. 277:29897–29907.

    PubMed  Google Scholar 

  • Ding, Y.H., Smith, K.J., Garboczi, D.N., Utz, U., Biddison, W.E., and Wiley, D.C. (1998). Two human T cell receptors bind in a similar diagonal mode to the HLAA2/Tax peptide complex using different TCR amino acids. Immunity 8:403–411.

    PubMed  CAS  Google Scholar 

  • Ding, Y.H., Baker, B.M., Garboczi, D.N., Biddison, W.E., and Wiley, D.C. (1999). Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11:45–56.

    PubMed  CAS  Google Scholar 

  • Dyson, H.J., and Wright, P.E. (1995). Antigenic peptides. Faseb J. 9:37–42.

    PubMed  CAS  Google Scholar 

  • England, P., Bregegere, F., and Bedouelle, H. (1997). Energetic and kinetic contributions of contact residues of antibody D1.3 in the interaction with lysozyme. Biochemistry 36:164–172.

    PubMed  CAS  Google Scholar 

  • England, P., Nageotte, R., Renard, M., Page, A.L., and Bedouelle, H. (1999). Functional characterization of the somatic hypermutation process leading to antibody D1.3, a high affinity antibody directed against lysozyme. J. Immunol. 162:2129–2136.

    PubMed  CAS  Google Scholar 

  • Faelber, K., Kirchhofer, D., Presta, L., Kelley, R.F., and Muller, Y.A. (2001). The 1.85 A resolution crystal structures of tissue factor in complex with humanized Fab D3h44 and of free humanized Fab D3h44: revisiting the solvation of antigen combining sites. J. Mol. Biol. 313:83–97.

    PubMed  CAS  Google Scholar 

  • Fersht, A.R. (1988). Relationships between apparent binding energies measured in sitedirected mutagenesis experiments and energetics of binding and catalysis. Biochemistry 27:1577–1580.

    PubMed  CAS  Google Scholar 

  • Fields, B.A., Goldbaum, F.A., Ysern, X., Poljak, R.J., and Mariuzza, R.A. (1995). Molecular basis of antigen mimicry by an anti-idiotope. Nature 374:739–742.

    PubMed  CAS  Google Scholar 

  • Fields, B.A., Goldbaum, F.A., Dall’Acqua, W., Malchiodi, E.L., Cauerhff, A., Schwarz, F.P., Ysern, X., Poljak, R.J., and Mariuzza, R.A. (1996). Hydrogen bonding and solvent structure in an antigen-antibody interface. Crystal structures and thermodynamic characterization of three Fv mutants complexed with lysozyme. Biochemistry 35:15494–15503.

    PubMed  CAS  Google Scholar 

  • Foote, J., and Eisen, H.N. (1995). Kinetic and affinity limits on antibodies produced during immune responses. Proc. Natl. Acad. Sci. USA 92:1254–1256.

    PubMed  CAS  Google Scholar 

  • Furukawa, K., Akasako-Furukawa, A., Shirai, H., Nakamura, H., and Azuma, T. (1999). Junctional amino acids determine the maturation pathway of an antibody. Immunity 11:329–338.

    PubMed  CAS  Google Scholar 

  • Furukawa, K., Shirai, H., Azuma, T., and Nakamura, H. (2001). A role of the third complementarity-determining region in the affinity maturation of an antibody. J. Biol. Chem. 276:27622–27628.

    PubMed  CAS  Google Scholar 

  • Garcia, K.C., Ronco, P.M., Verroust, P.J., Brunger, A.T., and Amzel, L.M. (1992). Three-dimensional structure of an angiotensin II-Fab complex at 3 A: hormone recognition by an anti-idiotypic antibody. Science 257:502–507.

    PubMed  CAS  Google Scholar 

  • Garcia, K.C., Degano, M., Stanfield, R.L., Brunmark, A., Jackson, M.R., Peterson, P.A., Teyton, L., and Wilson, I.A. (1996). An alphabeta T cell receptor structure at 2.5A and its orientation in theTCR-MHC complex. Science 274:209–219.

    PubMed  CAS  Google Scholar 

  • Garcia, K.C., Tallquist, M.D., Pease, L.R., Brunmark, A., Scott, C.A., Degano, M., Stura, E.A., Peterson, P.A., Wilson, I.A., and Teyton, L. (1997). Alphabeta T cell receptor interactions with syngeneic and allogeneic ligands: affinity measurements and crystallization. Proc. Natl. Acad. Sci. USA 94:13838–13843.

    PubMed  CAS  Google Scholar 

  • Garcia, K.C., Degano, M., Pease, L.R., Huang, M., Peterson, P.A., Teyton, L., and Wilson, I.A. (1998). Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279:1166–1172.

    PubMed  CAS  Google Scholar 

  • Gerstner, R.B., Carter, P., and Lowman, H. B. (2002). Sequence plasticity in the antigenbinding site of a therapeutic anti-HER2 antibody. J. Mol. Biol. 321:851–862.

    PubMed  CAS  Google Scholar 

  • Gibas, C.J., Subramaniam, S., McCammon, J.A., Braden, B.C., and Poljak, R.J. (1997). pH dependence of antibody/lysozyme complexation. Biochemistry 36:15599–15614.

    PubMed  CAS  Google Scholar 

  • Goldbaum, F.A., Schwarz, F.P., Eisenstein, E., Cauerhff, A., Mariuzza, R.A., and Poljak, R.J. (1996). The effect of water activity on the association constant and the enthalpy of reaction between lysozyme and the specific antibodies D1.3 and D44.1. J. Mol. Recognit. 9:6–12.

    PubMed  CAS  Google Scholar 

  • Goldman, E.R., Dall’Acqua, W., Braden, B.C., and Mariuzza, R.A. (1997). Analysis of binding interactions in an idiotope-antiidiotope protein-protein complex by double mutant cycles. Biochemistry 36:49–56.

    PubMed  CAS  Google Scholar 

  • Green, S.M., and Shortle, D. (1993). Patterns of nonadditivity between pairs of stability mutations in staphylococcal nuclease. Biochemistry 32:10131–10139.

    PubMed  CAS  Google Scholar 

  • Guermonprez, P., England, P., Bedouelle, H., and Leclerc, C. (1998). The rate of dissociation between antibody and antigen determines the efficiency of antibodymediated antigen presentation to T cells. J. Immunol. 161:4542–4548.

    PubMed  CAS  Google Scholar 

  • Hahn, M., Winkler, D., Welfle, K., Misselwitz, R., Welfle, H., Wessner, H., Zahn, G., Scholz, C., Seifert, M., Harkins, R., et al. (2001). Cross-reactive binding of cyclic peptides to an anti-TGFalpha antibody Fab fragment: an X-ray structural and thermodynamic analysis. J. Mol. Biol. 314:293–309.

    PubMed  CAS  Google Scholar 

  • Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E.B., Bendahman, N., and Hamers, R. (1993). Naturally occurring antibodies devoid of light chains. Nature 363:446–448.

    PubMed  CAS  Google Scholar 

  • Harata, K. (1994). X-ray structure of a monoclinic form of hen egg-white lysozyme crystallized at 313 K. Comparison of two independent molecules. Acta Crystallogr. D50:250–257.

    CAS  Google Scholar 

  • Harris, L.J., Skaletsky, E., and McPherson, A. (1998). Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 275:861–872.

    PubMed  CAS  Google Scholar 

  • Hemmer, B., Vergelli, M., Pinilla, C., Houghten, R., and Martin, R. (1998). Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol. Today 19:163–168.

    PubMed  CAS  Google Scholar 

  • Hennecke, J., and Wiley, D.C. (2002). Structure of a complex of the human alpha/beta T cell receptor (TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR cross-restriction and alloreactivity. J. Exp. Med. 195:571–581.

    PubMed  CAS  Google Scholar 

  • Hennecke, J., Carfi, A., and Wiley, D.C. (2000). Structure of a covalently stabilized complex of a human alphabeta T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. Embo J. 19:5611–5624.

    PubMed  CAS  Google Scholar 

  • Herron, J.N., He, X.M., Ballard, D.W., Blier, P.R., Pace, P.E., Bothwell, A.L., Voss, E.W., Jr., and Edmundson, A.B. (1991). An autoantibody to single-stranded DNA: comparison of the three-dimensional structures of the unliganded Fab and a deoxynucleotide-Fab complex. Proteins 11:159–175.

    PubMed  CAS  Google Scholar 

  • Hewer, R., and Meyer, D. (2003). Peptide immunogens based on the envelope region of HIV-1 are recognized by HIV/AIDS patient polyclonal antibodies and induce strong humoral immune responses in mice and rabbits. Mol. Immunol. 40:327–335.

    PubMed  CAS  Google Scholar 

  • Janeway, C., Travers, P., Mark, W., and Capra, J. (1999). Immunobiology: The Immune System in Health and Disease, 4th edit Current Biology Publications, New York.

    Google Scholar 

  • Jones, S., and Thornton, J. M. (1996). Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93:13–20.

    PubMed  CAS  Google Scholar 

  • Kelley, R. F., O’Connell, M.P., Carter, P., Presta, L., Eigenbrot, C., Covarrubias, M., Snedecor, B., Bourell, J.H., and Vetterlein, D. (1992). Antigen binding thermodynamics and antiproliferative effects of chimeric and humanized antip185HER2 antibody Fab fragments. Biochemistry 31:5434–5441.

    PubMed  CAS  Google Scholar 

  • Kersh, E.N., Shaw, A.S., and Allen, P.M. (1998). Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science 281:572–575.

    PubMed  CAS  Google Scholar 

  • Kjer-Nielsen, L., Clements, C.S., Brooks, A.G., Purcell, A.W., Fontes, M.R., McCluskey, J., and Rossjohn, J. (2002a). The structure of HLA-B8 complexed to an immunodominant viral determinant: peptideinduced conformational changes and a mode of MHC class I dimerization. J. Immunol. 169:5153–5160.

    PubMed  Google Scholar 

  • Kjer-Nielsen, L., Clements, C.S., Brooks, A.G., Purcell, A.W., McCluskey, J., and Rossjohn, J. (2002b). The 1.5 A crystal structure of a highly selected antiviral T cell receptor provides evidence for a structural basis of immunodominance. Structure (Camb) 10:1521–1532.

    CAS  Google Scholar 

  • Kjer-Nielsen, L., Clements, C.S., Purcell, A.W., Brooks, A.G., Whisstock, J.C., Burrows, S.R., McCluskey, J., and Rossjohn, J. (2003). A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity 18:53–64.

    PubMed  CAS  Google Scholar 

  • Kondo, H., Shiroishi, M., Matsushima, M., Tsumoto, K., and Kumagai, I. (1999). Crystal structure of anti-Hen egg white lysozyme antibody (HyHEL-10) Fv-antigen complex. Local structural changes in the protein antigen and water-mediated interactions of Fvantigen and light chain-heavy chain interfaces. J. Biol. Chem. 274:27623–27631.

    PubMed  CAS  Google Scholar 

  • Kortemme, T., and Baker, D. (2002). A simple physical model for binding energy hot spots in proteinprotein complexes. Proc. Natl. Acad. Sci. USA 99:14116–14121.

    PubMed  CAS  Google Scholar 

  • Kouskoff, V., Famiglietti, S., Lacaud, G., Lang, P., Rider, J. E., Kay, B. K., Cambier, J. C., and Nemazee, D. (1998). Antigens varying in affinity for the B cell receptor induce differential B lymphocyte responses. J. Exp. Med. 188:1453–1464.

    PubMed  CAS  Google Scholar 

  • Krogsgaard, M., Prado, N., Adams, E.J., He, X.L., Chow, D.C., Wilson, D. B., Garcia, K.C., and Davis, M.M. (2003). Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Mol. Cell. 12:1367–1378.

    PubMed  CAS  Google Scholar 

  • Kurinov, I.V., and Harrison, R.W. (1995). The influence of temperature on lysozyme crystals. Structure and dynamics of protein and water. Acta Crystallogr. D51:98–109.

    CAS  Google Scholar 

  • Lawrence, M.C., and Colman, P.M. (1993). Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234:946–950.

    PubMed  CAS  Google Scholar 

  • Lehner, P.J., Wang, E.C., Moss, P.A., Williams, S., Platt, K., Friedman, S.M., Bell, J.I., and Borysiewicz, L.K. (1995). Human HLA-A0201-restricted cytotoxic T lymphocyte recognition of influenza A is dominated by T cells bearing the V beta 17 gene segment. J. Exp. Med. 181:79–91.

    PubMed  CAS  Google Scholar 

  • Li, Y., Li, H., Smith-Gill, S.J., and Mariuzza, R.A. (2000). Three-dimensional structures of the free and antigen-bound Fab from monoclonal antilysozyme antibody HyHEL-63(,). Biochemistry 39:6296–6309.

    PubMed  CAS  Google Scholar 

  • Li, P., Morris, D.L., Willcox, B.E., Steinle, A., Spies, T., and Strong, R.K. (2001a). Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat. Immunol. 2:443–451.

    PubMed  CAS  Google Scholar 

  • Li, Y., Lipschultz, C.A., Mohan, S., and Smith-Gill, S.J. (2001b). Mutations of an epitope hot-spot residue alter rate limiting steps of antigen-antibody protein-protein associations. Biochemistry 40:2011–2022.

    PubMed  CAS  Google Scholar 

  • Li, P., McDermott, G., and Strong, R.K. (2002). Crystal structures of RAE-1beta and its complex with the activating immunoreceptor NKG2D. Immunity 16:77–86.

    PubMed  CAS  Google Scholar 

  • Li, Y., Li, H., Yang, F., Smith-Gill, S.J., and Mariuzza, R.A. (2003). X-ray snapshots of affinity maturation in an antibody-antigen protein-protein interface. Nat. Struct. Biol. 10:482–488.

    PubMed  CAS  Google Scholar 

  • LiCata, V.J., and Ackers, G.K. (1995). Long-range, small magnitude nonadditivity of mutational effects in proteins. Biochemistry 34:3133–3139.

    PubMed  CAS  Google Scholar 

  • Lipschultz, C.A., Li, Y., and Smith-Gill, S. (2000). Experimental design for analysis of complex kinetics using surface plasmon resonance. Methods 20:310–318.

    PubMed  CAS  Google Scholar 

  • Luz, J.G., Huang, M., Garcia, K.C., Rudolph, M.G., Apostolopoulos, V., Teyton, L., and Wilson, I.A. (2002). Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing V(beta) Interactions. J. Exp. Med. 195:1175–1186.

    PubMed  CAS  Google Scholar 

  • Lyons, D.S., Lieberman, S.A., Hampl, J., Boniface, J.J., Chien, Y., Berg, L.J., and Davis, M.M. (1996). A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 5:53–61.

    PubMed  CAS  Google Scholar 

  • MacCallum, R.M., Martin, A.C., and Thornton, J.M. (1996). Antibody-antigen interactions: contact analysis and binding site topography. J. Mol. Biol. 262:732–745.

    PubMed  CAS  Google Scholar 

  • Manivel, V., Sahoo, N.C., Salunke, D.M., and Rao, K.V. (2000). Maturation of an antibody response is governed by modulations in flexibility of the antigen-combining site. Immunity 13:611–620.

    PubMed  CAS  Google Scholar 

  • Manning, T.C., Schlueter, C.J., Brodnicki, T.C., Parke, E.A., Speir, J.A., Garcia, K.C., Teyton, L., Wilson, I.A., and Kranz, D.M. (1998). Alanine scanning mutagenesis of an alphabeta T cell receptor: mapping the energy of antigen recognition. Immunity 8:413–425.

    PubMed  CAS  Google Scholar 

  • Margulies, D.H. (1997). Interactions of TCRs with MHC-peptide complexes: a quantitative basis for mechanistic models. Curr. Opin. Immunol. 9:390–395.

    PubMed  CAS  Google Scholar 

  • Mason, D. (1998). A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19:395–404.

    PubMed  CAS  Google Scholar 

  • McFarland, B.J., and Strong, R.K. (2003). Thermodynamic analysis of degenerate recognition by the NKG2D immunoreceptor: not induced fit but rigid adaptation. Immunity 19:803–812.

    PubMed  CAS  Google Scholar 

  • McFarland, B.J., Kortemme, T., Yu, S.F., Baker, D., and Strong, R.K. (2003). Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands. Structure (Camb) 11:411–422.

    CAS  Google Scholar 

  • McQueen, K.L., and Parham, P. (2002). Variable receptors controlling activation and inhibition of NK cells. Curr. Opin. Immunol. 14:615–621.

    PubMed  CAS  Google Scholar 

  • Metaxas, A., Tzartos, S., and Liakopoulou-Kyriakide, M. (2002). The production of antihexapeptide antibodies which recognize the S7, L6 and L13 ribosomal proteins of Escherichia coli. J. Pept. Sci. 8:118–124.

    PubMed  CAS  Google Scholar 

  • Monaco-Malbet, S., Berthet-Colominas, C., Novelli, A., Battai, N., Piga, N., Cheynet, V., Mallet, F., and Cusack, S. (2000). Mutual conformational adaptations in antigen and antibody upon complex formation between an Fab and HIV-1 capsid protein p24. Struct. Fold. Des. 8:1069–1077.

    CAS  Google Scholar 

  • Moss, P.A., Moots, R.J., Rosenberg, W.M., Rowland-Jones, S.J., Bodmer, H.C., McMichael, A.J., and Bell, J.I. (1991). Extensive conservation of alpha and beta chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide. Proc. Natl. Acad. Sci. USA 88:8987–8990.

    PubMed  CAS  Google Scholar 

  • Muller, Y.A., Chen, Y., Christinger, H.W., Li, B., Cunningham, B. C., Lowman, H. B., and de Vos, A. M. (1998). VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 A resolution and mutational analysis of the interface. Structure 6:1153–1167.

    PubMed  CAS  Google Scholar 

  • Mylvaganam, S.E., Paterson, Y., and Getzoff, E.D. (1998). Structural basis for the binding of an anticytochrome c antibody to its antigen: crystal structures of FabE8-cytochrome c complex to 1.8 A resolution and FabE8 to 2.26 A resolution. J. Mol. Biol. 281:301–322.

    PubMed  CAS  Google Scholar 

  • Natarajan, K., Dimasi, N., Wang, J., Mariuzza, R.A., and Margulies, D.H. (2002). Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu. Rev. Immunol. 20:853–885.

    PubMed  CAS  Google Scholar 

  • Omelyanenko, V.G., Jiskoot, W., and Herron, J. N. (1993). Role of electrostatic interactions in the binding of fluorescein by anti-fluorescein antibody 4-4-20. Biochemistry 32:10423–10429.

    PubMed  CAS  Google Scholar 

  • Padlan, E.A., Silverton, E.W., Sheriff, S., Cohen, G.H., Smith-Gill, S.J., and Davies, D.R. (1989). Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc. Natl. Acad. Sci. USA 86:5938–5942.

    PubMed  CAS  Google Scholar 

  • Palmer, E. (2003). Negative selection—clearing out the bad apples from the T-cell repertoire. Nat. Rev. Immunol. 3:383–391.

    PubMed  CAS  Google Scholar 

  • Pan, Y., Yuhasz, S.C., and Amzel, L.M. (1995). Anti-idiotypic antibodies: biological function and structural studies. FASEB J. 9:43–49.

    PubMed  CAS  Google Scholar 

  • Patten, P.A., Gray, N.S., Yang, P.L., Marks, C.B., Wedemayer, G.J., Boniface, J.J., Stevens, R.C., and Schultz, P.G. (1996). The immunological evolution of catalysis. Science 271:1086–1091.

    PubMed  CAS  Google Scholar 

  • Pieper, R., Christian, R.E., Gonzales, M.I., Nishimura, M.I., Gupta, G., Settlage, R.E., Shabanowitz, J., Rosenberg, S.A., Hunt, D.F., and Topalian, S.L. (1999). Biochemical identification of a mutated human melanoma antigen recognized by CD4(+) T cells. J. Exp. Med. 189:757–766.

    PubMed  CAS  Google Scholar 

  • Poljak, R.J. (1994). An idiotope-anti-idiotope complex and the structural basis of molecular mimicking. Proc. Natl. Acad. Sci. USA 91:1599–1600.

    PubMed  CAS  Google Scholar 

  • Prasad, G.S., Earhart, C.A., Murray, D.L., Novick, R.P., Schlievert, P.M., and Ohlendorf, D.H. (1993). Structure of toxic shock syndrome toxin 1. Biochemistry 32:13761–13766.

    PubMed  CAS  Google Scholar 

  • Radaev, S., Rostro, B., Brooks, A.G., Colonna, M., and Sun, P.D. (2001). Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15:1039–1049.

    PubMed  CAS  Google Scholar 

  • Rajewsky, K. (1996). Clonal selection and learning in the antibody system. Nature 381:751–758.

    PubMed  CAS  Google Scholar 

  • Rajpal, A., and Kirsch, J.F. (2000). Role of the minor energetic determinants of chicken egg white lysozyme (HEWL) to the stability of the HEWL.antibody scFv-10 complex. Proteins 40:49–57.

    PubMed  CAS  Google Scholar 

  • Ramanadham, M., Sieker, L.C., and Jensen, L.H. (1990). Refinement of triclinic lysozyme: II. The method of stereochemically restrained least squares. Acta Crystallogr B 46 (Pt 1):63–69.

    PubMed  Google Scholar 

  • Reiser, J.B., Darnault, C., Guimezanes, A., Gregoire, C., Mosser, T., Schmitt-Verhulst, A.M., Fontecilla-Camps, J.C., Malissen, B., Housset, D., and Mazza, G. (2000). Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat. Immunol. 1:291–297.

    PubMed  CAS  Google Scholar 

  • Reiser, J.B., Gregoire, C., Darnault, C., Mosser, T., Guimezanes, A., Schmitt-Verhulst, A.M., Fontecilla-Camps, J.C., Mazza, G., Malissen, B., and Housset, D. (2002). A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16:345–354.

    PubMed  CAS  Google Scholar 

  • Reiser, J.B., Darnault, C., Gregoire, C., Mosser, T., Mazza, G., Kearney, A., van der Merwe, P.A., Fontecilla-Camps, J.C., Housset, D., and Malissen, B. (2003). CDR3loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 4:241–247.

    PubMed  CAS  Google Scholar 

  • Rini, J.M., Schulze-Gahmen, U., and Wilson, I.A. (1992). Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science 255:959–965.

    PubMed  CAS  Google Scholar 

  • Romesberg, F.E., Spiller, B., Schultz, P.G., and Stevens, R.C. (1998). Immunological origins of binding and catalysis in a Diels-Alderase antibody. Science 279:1929–1933.

    PubMed  CAS  Google Scholar 

  • Roost, H.P., Bachmann, M.F., Haag, A., Kalinke, U., Pliska, V., Hengartner, H., and Zinkernagel, R.M. (1995). Early high-affinity neutralizing anti-viral IgG responses without further overall improvements of affinity. Proc. Natl. Acad. Sci. USA 92:1257–1261.

    PubMed  CAS  Google Scholar 

  • Rudolph, M.G., and Wilson, I.A. (2002). The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 14:52–65.

    PubMed  CAS  Google Scholar 

  • Schreiber, G., and Fersht, A.R. (1995). Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J. Mol. Biol. 248:478–486.

    PubMed  CAS  Google Scholar 

  • Serrano, L., Horovitz, A., Avron, B., Bycroft, M., and Fersht, A.R. (1990). Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Biochemistry 29:9343–9352.

    PubMed  CAS  Google Scholar 

  • Sherman, L.A., and Chattopadhyay, S. (1993). The molecular basis of allorecognition. Annu. Rev. Immunol. 11:385–402.

    PubMed  CAS  Google Scholar 

  • Sigurskjold, B.W., Altman, E., and Bundle, D.R. (1991). Sensitive titration microcalorimetric study of the binding of Salmonella O-antigenic oligosaccharides by a monoclonal antibody. Eur. J. Biochem. 197:239–246.

    PubMed  CAS  Google Scholar 

  • Speir, J.A., Stevens, J., Joly, E., Butcher, G.W., and Wilson, I.A. (2001). Two different, highly exposed, bulged structures for an unusually long peptide bound to rat MHC class I RT1-Aa. Immunity 14:81–92.

    PubMed  CAS  Google Scholar 

  • Stanfield, R.L., Fieser, T.M., Lerner, R.A., and Wilson, I.A. (1990). Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 A. Science 248:712–719.

    PubMed  CAS  Google Scholar 

  • Stewart-Jones, G.B., McMichael, A.J., Bell, J.I., Stuart, D.I., and Jones, E.Y. (2003). A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4:657–663.

    PubMed  CAS  Google Scholar 

  • Sundberg, E.J., Urrutia, M., Braden, B.C., Isern, J., Tsuchiya, D., Fields, B.A., Malchiodi, E.L., Tormo, J., Schwarz, F.P., and Mariuzza, R.A. (2000). Estimation of the hydrophobic effect in an antigen-antibody protein-protein interface. Biochemistry 39:15375–15387.

    PubMed  CAS  Google Scholar 

  • Sundberg, E.J., Li, Y., and Mariuzza, R.A. (2002a). So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes. Curr. Opin. Immunol. 14:36–44.

    PubMed  CAS  Google Scholar 

  • Sundberg, E.J., Sawicki, M.W., Southwood, S., Andersen, P.S., Sette, A., and Mariuzza, R.A. (2002b). Minor structural changes in a mutated human melanoma antigen correspond to dramatically enhanced stimulation of a CD4+ tumor-infiltrating lymphocyte line. J. Mol. Biol. 319:449–461.

    PubMed  CAS  Google Scholar 

  • Tomlinson, I.M., Cox, J.P., Gherardi, E., Lesk, A.M., and Chothia, C. (1995). The structural repertoire of the human V kappa domain. EMBO J. 14:4628–4638.

    PubMed  CAS  Google Scholar 

  • Tomlinson, I.M., Walter, G., Jones, P.T., Dear, P.H., Sonnhammer, E.L., and Winter, G. (1996). The imprint of somatic hypermutation on the repertoire of human germline V genes. J. Mol. Biol. 256:813–817.

    PubMed  CAS  Google Scholar 

  • Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature 302:575–581.

    PubMed  CAS  Google Scholar 

  • Tormo, J., Blaas, D., Parry, N.R., Rowlands, D., Stuart, D., and Fita, I. (1994). Crystal structure of a human rhinovirus neutralizing antibody complexed with a peptide derived from viral capsid protein VP2. EMBO J. 13:2247–2256.

    PubMed  CAS  Google Scholar 

  • Tormo, J., Natarajan, K., Margulies, D.H., and Mariuzza, R.A. (1999). Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402:623–631.

    PubMed  CAS  Google Scholar 

  • Ulrich, H.D., Mundorff, E., Santarsiero, B.D., Driggers, E.M., Stevens, R.C., and Schultz, P.G. (1997). The interplay between binding energy and catalysis in the evolution of a catalytic antibody. Nature 389:271–275.

    PubMed  CAS  Google Scholar 

  • Vivier, E., Tomasello, E., and Paul, P. (2002). Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr. Opin. Immunol. 14:306–311.

    PubMed  CAS  Google Scholar 

  • Wang, J., Whitman, M.C., Natarajan, K., Tormo, J., Mariuzza, R.A., and Margulies, D. H. (2002). Binding of the natural killer cell inhibitory receptor Ly49A to its major histocompatibility complex class I ligand. Crucial contacts include both H-2Dd AND beta 2-microglobulin. J. Biol. Chem. 277:1433–1442.

    PubMed  CAS  Google Scholar 

  • Webster, D.M., Henry, A.H., and Rees, A.R. (1994). Antibody-antigen interactions. Curr. Opin. Struct. Biol. 4:123–129.

    CAS  Google Scholar 

  • Wedemayer, G.J., Patten, P.A., Wang, L.H., Schultz, P.G., and Stevens, R.C. (1997a). Structural insights into the evolution of an antibody combining site. Science 276:1665–1669.

    PubMed  CAS  Google Scholar 

  • Wedemayer, G.J., Wang, L.H., Patten, P.A., Schultz, P.G., and Stevens, R.C. (1997b). Crystal structures of the free and liganded form of an esterolytic catalytic antibody. J. Mol. Biol. 268:390–400.

    PubMed  CAS  Google Scholar 

  • Willcox, B.E., Gao, G.F., Wyer, J.R., Ladbury, J.E., Bell, J.I., Jakobsen, B.K., and van der Merwe, P. A. (1999). TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10:357–365.

    PubMed  CAS  Google Scholar 

  • Wilson, I.A., and Stanfield, R.L. (1993). Antibody-antigen interactions. Curr. Opin. Struct. Biol. 3:113–118.

    CAS  Google Scholar 

  • Wilson, I.A., and Stanfield, R.L. (1994). Antibody-antigen interactions: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4:857–867.

    PubMed  CAS  Google Scholar 

  • Wolan, D.W., Teyton, L., Rudolph, M.G., Villmow, B., Bauer, S., Busch, D.H., and Wilson, I.A. (2001). Crystal structure of the murine NK cell-activating receptor NKG2D at 1.95 A. Nat. Immunol 2:248–254.

    PubMed  CAS  Google Scholar 

  • Wu, T.T., and Kabat, E.A. (1970). An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132:211–250.

    PubMed  CAS  Google Scholar 

  • Wu, L.C., Tuot, D.S., Lyons, D.S., Garcia, K.C., and Davis, M.M. (2002). Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418:552–556.

    PubMed  CAS  Google Scholar 

  • Xavier, K.A., McDonald, S.M., McCammon, J.A., and Willson, R.C. (1999). Association and dissociation kinetics of bobwhite quail lysozyme with monoclonal antibody HyHEL-5. Protein Eng. 12:79–83.

    PubMed  CAS  Google Scholar 

  • Yang, J., Swaminathan, C.P., Huang, Y., Guan, R., Cho, S., Kieke, M.C., Kranz, D.M., Mariuzza, R.A., and Sundberg, E.J. (2003). Dissecting cooperative and additive binding energetics in the affinity maturation pathway of a protein-protein interface. J. Biol. Chem. 278:50412–50421.

    PubMed  Google Scholar 

  • Yang, P.L., and Schultz, P.G. (1999). Mutational analysis of the affinity maturation of antibody 48G7. J. Mol. Biol. 294:1191–1201.

    PubMed  CAS  Google Scholar 

  • Yokoyama, W.M., and Plougastel, B.F. (2003). Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3:304–316.

    PubMed  CAS  Google Scholar 

  • Ysern, X., Fields, B.A., Bhat, T.N., Goldbaum, F.A., Dall’Acqua, W., Schwarz, F.P., Poljak, R.J., and Mariuzza, R.A. (1994). Solvent rearrangement in an antigen-antibody interface introduced by sitedirected mutagenesis of the antibody combining site. J. Mol. Biol. 238:496–500.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Sundberg, E.J., Mariuzza, R.A. (2005). Molecular Recognition in the Immune System. In: Waksman, G. (eds) Proteomics and Protein-Protein Interactions. Protein Reviews, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-24532-4_4

Download citation

Publish with us

Policies and ethics