Skip to main content

Novel Cytokines in the Treatment of Malignancies

  • Chapter
Cytokines and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 126))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nakamura, K., Okamura, H., Wada, M., Nagata, K. & Tamura, T. Endotoxin-induced serum factor that stimulates gamma interferon production. Infect Immun 57, 590–5 (1989).

    PubMed  CAS  Google Scholar 

  2. Okamura, H., Nagata, K., Komatsu, T., Tanimoto, T., Nukata, Y., Tanabe, F. et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect Immun 63, 3966–72 (1995).

    PubMed  CAS  Google Scholar 

  3. Nakamura, K., Okamura, H., Nagata, K., Komatsu, T. & Tamura, T. Purification of a factor which provides a costimulatory signal for gamma interferon production. Infect Immun 61, 64–70 (1993).

    PubMed  CAS  Google Scholar 

  4. Okamura, H., Tsutsi, H., Komatsu, T., Yutsudo, M., Hakura, A., Tanimoto, T. et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378, 88–91 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. Ushio, S., Namba, M., Okura, T., Hattori, K., Nukada, Y., Akita, K. et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol 156, 4274–9 (1996).

    PubMed  CAS  Google Scholar 

  6. Udagawa, N., Horwood, N. J., Elliott, J., Mackay, A., Owens, J., Okamura, H. et al. Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. J Exp Med 185, 1005–12 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. Torigoe, K., Ushio, S., Okura, T., Kobayashi, S., Taniai, M., Kunikata, T. et al. Purification and characterization of the human interleukin-18 receptor. J Biol Chem 272, 25737–42 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. Parnet, P., Garka, K. E., Bonnert, T. P., Dower, S. K. & Sims, J. E. IL-1Rrp is a novel receptor-like molecule similar to the type I interleukin-1 receptor and its homologues T1/ST2 and IL-1R AcP. J Biol Chem 271, 3967–70 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. Born, T. L., Thomassen, E., Bird, T. A. & Sims, J. E. Cloning of a novel receptor subunit, AcPL, required for interleukin-18 signaling. J Biol Chem 273, 29445–50 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. Hyodo, Y., Matsui, K., Hayashi, N., Tsutsui, H., Kashiwamura, S., Yamauchi, H. et al. IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J Immunol 162, 1662–8 (1999).

    PubMed  CAS  Google Scholar 

  11. Gerdes, N., Sukhova, G. K., Libby, P., Reynolds, R. S., Young, J. L. & Schonbeck, U. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 195, 245–57 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Yoshimoto, T., Takeda, K., Tanaka, T., Ohkusu, K., Kashiwamura, S., Okamura, H. et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. Jlmmunol 161, 3400–7 (1998).

    CAS  Google Scholar 

  13. Smeltz, R. B., Chen, J., Hu-Li, J. & Shevach, E. M. Regulation of interleukin (IL)-18 receptor alpha chain expression on CD4(+) T cells during T helper (Th)l/Th2 differentiation. Critical downregulatory role of IL-4. J Exp Med 194, 143–53 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. Xu, D., Chan, W. L., Leung, B. P., Hunter, D., Schulz, K., Carter, R. W. et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J Exp Med 188, 1485–92 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–47 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. Kojima, H., Takeuchi, M., Ohta, T., Nishida, Y., Arai, N., Ikeda, M. et al. Interleukin-18 activates the IRAK-TRAF6 pathway in mouse EL-4 cells. Biochem Biophys Res Commun 244, 183–6 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. Matsumoto, S., Tsuji-Takayama, K., Aizawa, Y., Koide, K., Takeuchi, M., Ohta, T. et al. Interleukin-18 activates NF-kappaB in murine T helper type 1 cells. Biochem Biophys Res Commun 234, 454–7 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. Kalina, U., Kauschat, D., Koyama, N., Nuernberger, H., Ballas, K., Koschmieder, S. et al. IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol 165, 1307–13 (2000).

    PubMed  CAS  Google Scholar 

  19. Shimoda, K., Tsutsui, H., Aoki, K., Kato, K., Matsuda, T., Numata, A. et al. Partial impairment of interleukin-12 (IL-12) and IL-18 signaling in Tyk2-deficient mice. Blood 99, 2094–9 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. Nakahira, M., Ahn, H. J., Park, W. R., Gao, P., Tomura, M., Park, C. S. et al. Synergy of IL-12 and IL-18 for IFN-gamma gene expression: IL-12-induced STAT4 contributes to IFN-gamma promoter activation by up-regulating the binding activity of IL-18-induced activator protein 1. J Immunol 168, 1146–53 (2002).

    PubMed  CAS  Google Scholar 

  21. Dao, T., Mehal, W. Z. & Crispe, I. N. IL-18 augments perforin-dependent cytotoxicity of liver NK-T cells. J Immunol 161, 2217–22 (1998).

    PubMed  CAS  Google Scholar 

  22. Tsutsui, H., Nakanishi, K., Matsui, K., Higashino, K., Okamura, H., Miyazawa, Y. et al. IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol 157, 3967–73 (1996).

    PubMed  CAS  Google Scholar 

  23. Takeda, K., Tsutsui, H., Yoshimoto, T., Adachi, O., Yoshida, N., Kishimoto, T. et al. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8, 383–90 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. Hoshino, T., Wiltrout, R. H. & Young, H. A. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J Immunol 162, 5070–7 (1999).

    PubMed  CAS  Google Scholar 

  25. Yoshimoto, T., Tsutsui, H., Tominaga, K., Hoshino, K., Okamura, H., Akira, S. et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci USA 96, 13962–6 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. Fukao, T., Matsuda, S. & Koyasu, S. Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-gamma production by dendritic cells. J Immunol 164, 64–71 (2000).

    PubMed  CAS  Google Scholar 

  27. Leung, B. P., Culshaw, S., Gracie, J. A., Hunter, D., Canetti, C. A., Campbell, C. et al. A role for IL-18 in neutrophil activation. J Immunol 167, 2879–86 (2001).

    PubMed  CAS  Google Scholar 

  28. Morel, J. C., Park, C. C., Woods, J. M. & Koch, A. E. A novel role for interleukin-18 in adhesion molecule induction through NF kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J Biol Chem 276, 37069–75 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. Micallef, M. J., Yoshida, K., Kawai, S., Hanaya, T., Kohno, K., Arai, S. et al. In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunol Immunother 43, 361–7 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. Micallef, M. J., Tanimoto, T., Kohno, K., Ikeda, M. & Kurimoto, M. Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res 57, 4557–63 (1997).

    PubMed  CAS  Google Scholar 

  31. Yoshida, Y., Tasaki, K., Kimurai, M., Takenaga, K., Yamamoto, H., Yamaguchi, T. et al. Antitumor effect of human pancreatic cancer cells transduced with cytokine genes which activate Th1 helper T cells. Anticancer Res 18, 333–5 (1998).

    PubMed  CAS  Google Scholar 

  32. Hara, S., Nagai, H., Miyake, H., Yamanaka, K., Arakawa, S., Ichihashi, M. et al. Secreted type of modified interleukin-18 gene transduced into mouse renal cell carcinoma cells induces systemic tumor immunity. J Urol 165, 2039–43 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. Tan, J., Crucian, B. E., Chang, A. E., Aruga, E., Aruga, A., Dovhey, S. E. et al. Interferon-gamma-inducing factor elicits antitumor immunity in association with interferon-gamma production. J Immunother 21, 48–55 (1998).

    PubMed  CAS  Google Scholar 

  34. Osaki, T., Peron, J. M., Cai, Q., Okamura, H., Robbins, P. D., Kurimoto, M. et al. IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma-and IL-12-independent antitumor effects. J Immunol 160, 1742–9 (1998).

    PubMed  CAS  Google Scholar 

  35. Yamanaka, K., Hara, I., Nagai, H., Miyake, H., Gohji, K., Micallef, M. J. et al. Synergistic antitumor effects of interleukin-12 gene transfer and systemic administration of interleukin-18 in a mouse bladder cancer model. Cancer Immunol Immunother 48, 297–302 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Baxevanis, C. N., Gritzapis, A. D. & Papamichail, M. In vivo antitumor activity of NKT cells activated by the combination of IL-12 and IL-18. J Immunol 171, 2953–9 (2003).

    PubMed  CAS  Google Scholar 

  37. Coughlin, C. M., Salhany, K. E., Wysocka, M., Aruga, E., Kurzawa, H., Chang, A. E. et al. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest 101, 1441–52 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. Carson, W. E., Dierksheide, J. E., Jabbour, S., Anghelina, M., Bouchard, P., Ku, G. et al. Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-gamma production and STAT-mediated signal transduction. Blood 96, 1465–73 (2000).

    PubMed  CAS  Google Scholar 

  39. Ohtsuki, T., Micallef, M. J., Kohno, K., Tanimoto, T., Ikeda, M. & Kurimoto, M. Interleukin 18 enhances Fas ligand expression and induces apoptosis in Fas-expressing human myelomonocytic KG-1 cells. Anticancer Res 17, 3253–8 (1997).

    PubMed  CAS  Google Scholar 

  40. Son, Y. I., Dallal, R. M. & Lotze, M. T. Combined treatment with interleukin-18 and low-dose interleukin-2 induced regression of a murine sarcoma and memory response. J Immunother 26, 234–40 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Robertson, M. J., Mier, J. W., Weisenbach, J., Roberts, S., Oei, C., Koch, K. et al. in Proceedings of the American Society of Clinical Oncology 178 (Chicago, IL, USA, 2003).

    Google Scholar 

  42. Ozaki, K., Kikly, K., Michalovich, D., Young, P. R. & Leonard, W. J. Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci USA 97, 11439–44 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. Parrish-Novak, J., Dillon, S. R., Nelson, A., Hammond, A., Sprecher, C., Gross, J. A. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–63 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. Murakami, M., Narazaki, M., Hibi, M., Yawata, H., Yasukawa, K., Hamaguchi, M. et al. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci USA 88, 11349–53 (1991).

    Article  PubMed  CAS  Google Scholar 

  45. Li, X. C., Demirci, G., Ferrari-Lacraz, S., Groves, C., Coyle, A., Malek, T. R. et al. IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat Med 7, 114–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. Asao, H., Okuyama, C., Kumaki, S., Ishii, N., Tsuchiya, S., Foster, D. et al. Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167, 1–5 (2001).

    PubMed  CAS  Google Scholar 

  47. Habib, T., Senadheera, S., Weinberg, K. & Kaushansky, K. The common gamma chain (gamma c) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry 41, 8725–31 (2002).

    Article  PubMed  CAS  Google Scholar 

  48. Strengell, M., Matikainen, S., Siren, J., Lehtonen, A., Foster, D., Julkunen, I. et al. IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol 170, 5464–9 (2003).

    PubMed  CAS  Google Scholar 

  49. Strengell, M., Sareneva, T., Foster, D., Julkunen, I. & Matikainen, S. IL-21 up-regulates the expression of genes associated with innate immunity and Th1 response. J Immunol 169, 3600–5 (2002).

    PubMed  Google Scholar 

  50. Kasaian, M. T., Whitters, M. J., Carter, L. L., Lowe, L. D., Jussif, J. M., Deng, B. et al. IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 16, 559–69 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. Brandt, K., Bulfone-Paus, S., Jenckel, A., Foster, D. C., Paus, R. & Ruckert, R. Interleukin-21 inhibits dendritic cell-mediated T cell activation and induction of contact hypersensitivity in vivo. J Invest Dermatol 121, 1379–82 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. Brandt, K., Bulfone-Paus, S., Foster, D. C. & Ruckert, R. Interleukin-21 inhibits dendritic cell activation and maturation. Blood 102, 4090–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. Brady, J., Hayakawa, Y., Smyth, M. J. & Nutt, S. L. IL-21 induces the functional maturation of murine NK cells. J Immunol 172, 2048–58 (2004).

    PubMed  CAS  Google Scholar 

  54. Toomey, J. A., Gays, F., Foster, D. & Brooks, C. G. Cytokine requirements for the growth and development of mouse NK cells in vitro. J Leukoc Biol 74, 233–42 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. Sivori, S., Cantoni, C., Parolini, S., Marcenaro, E., Conte, R., Moretta, L. et al. IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol 33, 3439–47 (2003).

    Article  PubMed  CAS  Google Scholar 

  56. Eberl, M., Engel, R., Beck, E. & Jomaa, H. Differentiation of human gamma-delta T cells towards distinct memory phenotypes. Cell Immunol 218, 1–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. Mehta, D. S., Wurster, A. L., Whitters, M. J., Young, D. A., Collins, M. & Grusby, M. J. IL-21 induces the apoptosis of resting and activated primary B cells. J Immunol 170, 4111–8 (2003).

    PubMed  CAS  Google Scholar 

  58. Ozaki, K., Spolski, R., Feng, C. G., Qi, C. F., Cheng, J., Sher, A. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–4 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. Suto, A., Nakajima, H., Hirose, K., Suzuki, K., Kagami, S., Seto, Y. et al. Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line C(epsilon) transcription of IL-4-stimulated B cells. Blood 100, 4565–73 (2002).

    Article  PubMed  CAS  Google Scholar 

  60. Pene, J., Gauchat, J. F., Lecart, S., Drouet, E., Guglielmi, P., Boulay, V. et al. Cutting Edge: IL-21 Is a Switch Factor for the Production of IgG(1) and IgG(3) by Human B Cells. J Immunol 172, 5154–5157 (2004).

    PubMed  CAS  Google Scholar 

  61. Brenne, A. T., Baade Ro, T., Waage, A., Sundan, A., Borset, M. & Hjorth-Hansen, H. Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 99, 3756–62 (2002).

    Article  PubMed  CAS  Google Scholar 

  62. Nelson, A., Garcia, R., Hughes, S., Holdren, M., Sivakumar, P., Anderson, M. et al. in Proceedings of the American Association for Cancer Research 653 (Washington, D.C., USA, 2003).

    Google Scholar 

  63. Wang, G., Tschoi, M., Spolski, R., Lou, Y., Ozaki, K., Feng, C. et al. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 63, 9016–22 (2003).

    PubMed  CAS  Google Scholar 

  64. Di Carlo, E., Comes, A., Orengo, A. M., Rosso, O., Meazza, R., Musiani, P. et al. IL-21 induces tumor rejection by specific CTL and IFN-gamma-dependent CXC chemokines in syngeneic mice. J Immunol 172, 1540–7 (2004).

    PubMed  Google Scholar 

  65. Scott, R. E., Tzen, C. Y., Witte, M. M., Blatti, S. & Wang, H. Regulation of differentiation, proliferation and cancer suppressor activity. Int J Dev Biol 37, 67–74 (1993).

    PubMed  CAS  Google Scholar 

  66. Jiang, H., Lin, J. J., Su, Z. Z., Goldstein, N. I. & Fisher, P. B. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11, 2477–86 (1995).

    PubMed  CAS  Google Scholar 

  67. Jiang, H., Lin, J., Su, Z. Z., Herlyn, M., Kerbel, R. S., Weissman, B. E. et al. The melanoma differentiation-associated gene mda-6, which encodes the cyclin-dependent kinase inhibitor p21, is differentially expressed during growth, differentiation and progression in human melanoma cells. Oncogene 10, 1855–64 (1995).

    PubMed  CAS  Google Scholar 

  68. Huang, E. Y., Madireddi, M. T., Gopalkrishnan, R. V., Leszczyniecka, M., Su, Z., Lebedeva, I. V. et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene 20, 7051–63 (2001).

    Article  PubMed  CAS  Google Scholar 

  69. Lebedeva, I. V., Su, Z. Z., Chang, Y., Kitada, S., Reed, J. C. & Fisher, P. B. The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene 21, 708–18 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. Ellerhorst, J. A., Prieto, V. G., Ekmekcioglu, S., Broemeling, L., Yekell, S., Chada, S. et al. Loss of MDA-7 expression with progression of melanoma. J Clin Oncol 20, 1069–74 (2002).

    Article  PubMed  Google Scholar 

  71. Wolk, K., Kunz, S., Asadullah, K. & Sabat, R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 168, 5397–402 (2002).

    PubMed  CAS  Google Scholar 

  72. Caudell, E. G., Mumm, J. B., Poindexter, N., Ekmekcioglu, S., Mhashilkar, A. M., Yang, X. H. et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol 168, 6041–6 (2002).

    PubMed  CAS  Google Scholar 

  73. Kotenko, S. V., Krause, C. D., Izotova, L. S., Pollack, B. P., Wu, W. & Pestka, S. Identification and functional characterization of a second chain of the interleukin-10 receptor complex. Embo J 16, 5894–903 (1997).

    Article  PubMed  CAS  Google Scholar 

  74. Dumoutier, L., Leemans, C., Lejeune, D., Kotenko, S. V. & Renauld, J. C. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167, 3545–9 (2001).

    PubMed  CAS  Google Scholar 

  75. Wang, M., Tan, Z., Zhang, R., Kotenko, S. V. & Liang, P. Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem 277, 7341–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  76. Yacoub, A., Mitchell, C., Lebedeva, I. V., Sarkar, D., Su, Z. Z., McKinstry, R. et al. mda-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther 2, 347–53 (2003).

    PubMed  CAS  Google Scholar 

  77. Mhashilkar, A. M., Stewart, A. L., Sieger, K., Yang, H. Y., Khimani, A. H., Ito, I. et al. MDA-7 negatively regulates the beta-catenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther 8, 207–19 (2003).

    Article  PubMed  CAS  Google Scholar 

  78. Ekmekcioglu, S., Ellerhorst, J. A., Mumm, J. B., Zheng, M., Broemeling, L., Prieto, V. G. et al. Negative association of melanoma differentiation-associated gene (mda-7) and inducible nitric oxide synthase (iNOS) in human melanoma: MDA-7 regulates iNOS expression in melanoma cells. Mol Cancer Ther 2, 9–17 (2003).

    PubMed  CAS  Google Scholar 

  79. Sarkar, D., Su, Z. Z., Lebedeva, I. V., Sauane, M., Gopalkrishnan, R. V., Valerie, K. et al. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA 99, 10054–9 (2002).

    Article  PubMed  CAS  Google Scholar 

  80. Catlett-Falcone, R., Landowski, T. H., Oshiro, M. M., Turkson, J., Levitzki, A., Savino, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–15 (1999).

    Article  PubMed  CAS  Google Scholar 

  81. Chai, S. K., Nichols, G. L. & Rothman, P. Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J Immunol 159, 4720–8 (1997).

    PubMed  CAS  Google Scholar 

  82. Su, Z. Z., Lebedeva, I. V., Sarkar, D., Gopalkrishnan, R. V., Sauane, M., Sigmon, C. et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene 22, 1164–80 (2003).

    Article  PubMed  CAS  Google Scholar 

  83. Su, Z. Z., Madireddi, M. T., Lin, J. J., Young, C. S., Kitada, S., Reed, J. C. et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA 95, 14400–5 (1998).

    Article  PubMed  CAS  Google Scholar 

  84. Ramesh, R., Mhashilkar, A. B., Tanaka, F., Saito, Y., Branch, K. S., Mumm, J. B. et al. in Proceedings of the American Association for Cancer Research 1106 (Washington, DC, USA, 2003).

    Google Scholar 

  85. Cunningham, C. C., Richards, D., Tong, A., Zhang, Y., Su, D., Chada, S. et al. in Proceedings of the American Society of Clinical Oncology (Chicago, IL, USA, 2002).

    Google Scholar 

  86. Coffee, K., Cunningham, C. C., Nemunaitis, J., Richards, D., Tong, A., Chada, S. et al. in Proceedings of the American Society of Clinical Oncology (Orlando, FL, USA, 2003).

    Google Scholar 

  87. Knudson, A. G. Cancer genetics. Am J Med Genet 111, 96–102 (2002).

    Article  PubMed  Google Scholar 

  88. Perona, R. & Sanchez-Perez, I. Control of oncogenesis and cancer therapy resistance. Br J Cancer 90, 573–7 (2004).

    Article  PubMed  CAS  Google Scholar 

  89. LeMaistre, C. F. & Knight, W. A., 3rd. High dose chemotherapy with autologous marrow rescue in the treatment of resistant solid tumors. Invest New Drugs 1, 321–9 (1983).

    Article  PubMed  CAS  Google Scholar 

  90. Bezwoda, W. R., Dansey, R. & Bezwoda, M. A. Treatment of Hodgkin's disease with MOPP chemotherapy: effect of dose and schedule modification on treatment outcome. Oncology 47, 29–36 (1990).

    Article  PubMed  CAS  Google Scholar 

  91. Pizzorno, G. & Handschumacher, R. E. Effect of clinically modeled regimens on the growth response and development of resistance in human colon carcinoma cell lines. Biochem Pharmacol 49, 559–65 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Parihar, R., Carson, W.E. (2005). Novel Cytokines in the Treatment of Malignancies. In: Platanias, L.C. (eds) Cytokines and Cancer. Cancer Treatment and Research, vol 126. Springer, Boston, MA. https://doi.org/10.1007/0-387-24361-5_15

Download citation

  • DOI: https://doi.org/10.1007/0-387-24361-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24360-3

  • Online ISBN: 978-0-387-24361-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics