Skip to main content

Targeting Cytokine Receptors and Pathways in the Treatment of Breast Cancer

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 126))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal A, Murray T, Samuels A et al: Cancer statistics, 2003. CA Cancer J Clin. 2003;53:5–26

    Article  PubMed  Google Scholar 

  2. Chia, SK, Speers, C, Kang, A, et al. The impact of new chemotherapeutic and hormonal agents on the survival of women with metastatic breast cancer in a population based cohort (abstract). Proc Am Soc Clin Oncol. 2003; 22:6a

    Google Scholar 

  3. Beatson, GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet 1896; 2:104

    Google Scholar 

  4. Osborne CK; Yochmowitz MG; Knight WA 3rd; McGuire WL. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer. 1980; 46(12 Suppl):2884–8

    PubMed  CAS  Google Scholar 

  5. Wells A. EGF receptor. Int J Biochem Cell Biol. 1999; 31:637–643

    Article  PubMed  CAS  Google Scholar 

  6. 6-Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 1984; 312:513–516

    Article  Google Scholar 

  7. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000; 19: 3159–3167

    Article  PubMed  CAS  Google Scholar 

  8. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987; 235:177–182

    PubMed  CAS  Google Scholar 

  9. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990; 61: 203–212

    Article  PubMed  CAS  Google Scholar 

  10. Garus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997; 16:1647–1655

    Article  Google Scholar 

  11. Segatto O, Lonardo F, Pierce JH, Bottaro DP, Di Fiore PP. The role of autophosphorylation in modulation of erbB-2 transforming function. New Biol. 1990; 2: 187–195

    PubMed  CAS  Google Scholar 

  12. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16: 5276–5287

    PubMed  CAS  Google Scholar 

  13. Christianson TA, Doherty JK, Lin YJ, Ramsey EE, Holmes R, Keenan EJ, Clinton GM. NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res. 1998; 58: 5123–5129

    PubMed  CAS  Google Scholar 

  14. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001; 61: 4744–4749

    PubMed  CAS  Google Scholar 

  15. Baselga J, Albanell J, Molina MA, Arribas J. Mechanism of action of trastuzumab and scientific update. Semin Oncol. 2001; 28:4–11

    Article  PubMed  CAS  Google Scholar 

  16. Yip YL, Ward RL. Anti-ErbB-2 monoclonal antibodies and ErbB-2-directed vaccines. Cancer Immunol Immunother 2002; 50:569–587

    Article  PubMed  CAS  Google Scholar 

  17. Greenberg PA, Hortobagyi GN, Smith TL, Ziegler LD, Frye DK, Buzdar AU. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 1996; 14:2197–205

    PubMed  CAS  Google Scholar 

  18. Pietras RJ, Fendly BM, Chazin VR, Pegram MD, Howell SB, Slamon DJ. Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 1994; 9:1829–38

    PubMed  CAS  Google Scholar 

  19. Pietras RJ, Pegram MD, Finn RS, Maneval DA, Slamon DJ. Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene 1998; 17:2235–49

    Article  PubMed  CAS  Google Scholar 

  20. Pegram M, Hsu S, Lewis G, et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 1999; 18:2241–51

    Article  PubMed  CAS  Google Scholar 

  21. Konecny G, Pegram MD, Beryt M, et al. Therapeutic advantage of chemotherapy drugs in combination with Herceptin against human breast cancer cells with HER-2/neu overexpression. Breast Cancer Res Treat 1999; 57:114

    Google Scholar 

  22. Pietras RJ, Poen JC, Gallardo D, Wongvipat PN, Lee HJ, Slamon DJ. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res 1999; 59:1347–55

    PubMed  CAS  Google Scholar 

  23. Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998;58:2825–31

    PubMed  CAS  Google Scholar 

  24. Cobleigh M, Vogel C, Tripathy D, Robert N, Scholl S, Fehrenbacher L, Wolter J, Paton V, Shak S, Lieberman G, Slamon D. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–2648

    PubMed  CAS  Google Scholar 

  25. Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ. Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. J Clin Oncol. 1997; 17:1983–1987

    Google Scholar 

  26. Baselga, J. Herceptin® Alone or in Combination with Chemotherapy in the Treatment of HER2-Positive Metastatic Breast Cancer: Pivotal Trials. Oncology 2001; 61(Suppl.2):14–21

    Article  PubMed  CAS  Google Scholar 

  27. Bell, R. What Can We Learn from Herceptin® Trials in Metastatic Breast Cancer? Oncology 2002; 63(Suppl.1):39–46

    Article  PubMed  CAS  Google Scholar 

  28. Slamon D. J., Leyland-Jones B., Shak S., Fuchs H., Paton V., Bajamonde A., Fleming T., Eiermann W., Wolter J., Pegram M., Baselga J., Norton L. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. NEngl J Med 2001; 344:783–792

    Article  CAS  Google Scholar 

  29. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L,. Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M. Efficacy and Safety of Trastuzumab as a Single Agent in First-Line Treatment of HER2-Overexpressing Metastatic Breast Cancer. J Clin Oncol 2002; 20:719–726

    Article  PubMed  CAS  Google Scholar 

  30. Burstein HJ, Harris LN, Marcom PK, Lambert-Falls R, Havlin K, Overmoyer B, Friedlander, Jr. RJ, Gargiulo J, Strenger R, Vogel CL, Ryan PD, Ellis MJ, Nunes RA, Bunnell CA, Campos SM, Hallor M, Gelman R, Winer EP. Trastuzumab and Vinorelbine as First-Line Therapy for HER2-Overexpressing Metastatic Breast Cancer: Multicenter Phase II Trial With Clinical Outcomes, Analysis of Serum Tumor Markers as Predictive Factors, and Cardiac Surveillance Algorithm. J Clin Oncol 2003; 21:2889–2895

    Article  PubMed  CAS  Google Scholar 

  31. Meden H, Beneke A, Hesse T, et al. Weekly intravenous recombinant humanized anti-P185HER2 monoclonal antibody (herceptin) plus docetaxel in patients with metastatic breast cancer: a pilot study. Anticancer Res. 2001; 21:1301–1305

    PubMed  CAS  Google Scholar 

  32. Burris HA 3rd. Docetaxel (Taxotere) plus trastuzumab (Herceptin) in breast cancer. Semin Oncol. 2001; 28(1 suppl 3):38–44

    Article  PubMed  CAS  Google Scholar 

  33. Kuzur M, Albain K, Huntngton M, et al. A phase II trial of docetaxel and herceptin in metastatic breast cancer patients overexpressing HER2. Program and abstracts of the 36th Annual Meeting of the American Society of Clinical Oncology; May 20–23, 2000; San Francisco. Abstract 512

    Google Scholar 

  34. Pegram MD, Lipton A, Hayes DF, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-pl85HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol. 1998; 16:2659–2671

    PubMed  CAS  Google Scholar 

  35. O'Shaughnessy J, Vukelja SJ, Marsland T, et al. Phase II trial of gemcitabine plus trastuzumab in metastatic breast cancer patients previously treated with chemotherapy: preliminary results. Clin Breast Cancer. 2002; 3(suppl 1): 17–20

    PubMed  Google Scholar 

  36. Miller K, Sisk J, Ansari R, et al. Gemcitabine, paclitaxel, and trastuzumab in metastatic breast cancer. Oncology (Huntingt). 2001;15(2 suppl 3):38–40

    PubMed  CAS  Google Scholar 

  37. Robert N, Slamon D, Leyland J, et al. Toxicity profiles: a comparative study of Herceptin and taxol vs. Herceptin, taxol, and carboplatin in HER2+ patients with advanced breast cancer. Program and abstracts of the 24th Annual San Antonio Breast Cancer Symposium; December 10–13, 2001; San Antonio, Texas. Abstract 529

    Google Scholar 

  38. Leyland-Jones B, Gelmon K, Ayoub JP, Arnold A, Verma S, Dias R, Ghahramani P. Pharmacokinetics, Safety, and Efficacy of Trastuzumab Administered Every Three Weeks in Combination With Paclitaxel. J Clin Oncol 2003; 21:3965–3971

    Article  PubMed  CAS  Google Scholar 

  39. Carbonell Castellon X, Castaneda-Soto N, Clemens M, et al. Efficacy and safety of 3-weekly Herceptin monotherapy in women with HER2+ metastatic breast cancer: preliminary data from a phase II study. Program and abstracts of the 38th Annual Meeting of the American Society of Clinical Oncology; May 18–22, 2002; Orlando, Florida. Abstract 73

    Google Scholar 

  40. Tripathy D, Slamon D, Leyland-Jones B, et al. Treatment beyond progression in the Herceptin pivotal combination chemotherapy trial. Breast Cancer Res Treat. 2000; 64:32. Abstract 25

    Google Scholar 

  41. Fountzilas G, Razis E, Tsavdaridis D, Karina M, Labropoulos S, Christodoulou C, Mavroudis D, Gogas H, Georgoulias V, Skarlos D. Continuation of trastuzumab beyond disease progression is feasible and safe in patients with metastatic breast cancer: a retrospective analysis of 80 cases by the hellenic cooperative oncology group. Clin Breast Cancer 2003; 4(2):120–5

    Article  PubMed  CAS  Google Scholar 

  42. Tan AR, Swain SM. Ongoing adjuvant trials with trastuzumab in breast cancer. Semin Oncol. 2003; 30(5 Suppl 16):54–64.

    Article  PubMed  CAS  Google Scholar 

  43. Yarden Y. The EGFR family and its ligands in human cancer: signaling mechanisms and therapeutic opportunities. Eur J Cancer 2001; 37Suppl 4:S3–8

    Article  PubMed  CAS  Google Scholar 

  44. Todd R, Wong DT. Epidermal growth factor receptor (EGFR) biology and human oral cancer. Histol Histopathol 1999; 14:491–500

    PubMed  CAS  Google Scholar 

  45. Mendrola JM, Berger MB, King MC, Lemmon MA. The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem 2002; 277:4704–12

    Article  PubMed  CAS  Google Scholar 

  46. Arteaga CL. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 2001; 19(18 Suppl):32S–40S

    PubMed  CAS  Google Scholar 

  47. Shoelson SE. SH2 and PTB domain interactions in tyrosine kinase signal transduction. Curr Opin Chem Biol 1997; 1:227–34

    Article  PubMed  CAS  Google Scholar 

  48. Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 2001;12:397–408

    PubMed  CAS  Google Scholar 

  49. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev 1999;13:2905–27

    Article  PubMed  CAS  Google Scholar 

  50. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103:211–25

    Article  PubMed  CAS  Google Scholar 

  51. D'Errico A, Barozzi C, Fiorentino M, Carella R, Di Simone M, Ferruzzi L, et al. Role and new perspectives of transforming growth factor-alpha (TGF-alpha) in adenocarcinoma of the gastro-oesophageal junction. Br J Cancer 2000; 82:865–70

    Article  PubMed  Google Scholar 

  52. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer 2001; 37Suppl 4:S9–15

    Article  PubMed  CAS  Google Scholar 

  53. Bigner SH, Humphrey PA, Wong AJ, Vogelstein B, Mark J, Friedman HS, et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res 1990; 50:8017–22

    PubMed  CAS  Google Scholar 

  54. Moscatello DK, Montgomery RB, Sundareshan P, McDanel H, Wong MY, Wong AJ. Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 1996; 13:85–96

    PubMed  CAS  Google Scholar 

  55. Moscatello DK, Holgado-Madruga M, Emlet DR, Montgomery RB, Wong AJ. Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 1998; 273:200–6

    Article  PubMed  CAS  Google Scholar 

  56. Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 1995; 55:5536–9

    PubMed  CAS  Google Scholar 

  57. Klijn JG, Look MP, Portengen H, Alexieva-Figusch J, van Putten WL, Foekens JA. The prognostic value of epidermal growth factor receptor (EGF-R) in primary breast cancer: results of a 10-year follow-up study. Breast Cancer Res Treat 1994; 29: 73–83

    Article  PubMed  CAS  Google Scholar 

  58. Sharma AK, Horgan K, Douglas-Jones A, McClelland R, Gee J, Nicholson R. Dual immunocytochemical analysis of estrogen and epidermal growth factor receptors in human breast cancer. Br J Cancer 1994; 69: 1032–7

    PubMed  CAS  Google Scholar 

  59. Nicholson RI, McClelland RA, Gee JM, Manning DL, Cannon P, Robertson JF, Ellis IO, Blamey RW. Transforming growth factor-alpha and endocrine sensitivity in breast cancer. Cancer Res 1994; 54:1684–9

    PubMed  CAS  Google Scholar 

  60. Nicholson RI, McClelland RA, Finlay P, Eaton CL, Gullick WJ, Dixon AR, Robertson JF, Ellis IO, Blamey RW. Relationship between EGF-R. c-erbB-2 protein expression and Ki67 immunostaining in breast cancer and hormone sensitivity. Eur J Cancer 1993; 7:1018–23

    Article  Google Scholar 

  61. Harris AL, Nicholson S, Sainsbury JR, Farndon J, Wright C. Epidermal growth factor receptors in breast cancer: association with early relapse and death, poor response to hormones and interactions with neu. J Steroid Biochem 1989; 34:123–31

    Article  PubMed  CAS  Google Scholar 

  62. Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, Arteaga CL. Inhibition of HER2/neu (erbB2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 2000; 60:5887–94

    PubMed  CAS  Google Scholar 

  63. Kunisue H, Kurebayashi J, Otsuki T, Tang CK, Kurosumi M, Yamamoto S, Tanaka K, Doihara H, Shimizu N, Sonoo H. Anti-HER2 antibody enhances the growth inhibitory effect of anti-estrogen on breast cancer cells expressing both estrogen receptors and HER2. Br J Cancer 2000; 82:46–51

    Article  PubMed  CAS  Google Scholar 

  64. Massarweh S, Shou J, Mohsin SK, Ge M, Wakeling A, Osborne CK, Schiff R. Inhibition of epidermal growth factor/HER2 receptor signaling using ZD1839 (“IRESSA”) restores tamoxifen sensitivity and delays resistance to estrogen deprivation in HER2-overexpressing breast tumors. Proc Am Soc Clin Oncol 2002; 21:33a

    Google Scholar 

  65. Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (IRESSA) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 2001; 61: 8887–95

    PubMed  CAS  Google Scholar 

  66. Masui H, Kawamoto T, Sato JD, Wolf B, Sato G, Mendelsohn J. Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 1984; 44:1002–1007

    PubMed  CAS  Google Scholar 

  67. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001; 7:2958–70

    PubMed  CAS  Google Scholar 

  68. Gill GN, Kawamoto T, Cochet C, Le A, Sato JD, Masui H, et al. Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor binding and antagonists of epidermal growth factor stimulated tyrosine protein kinase activity. J Biol Chem 1984; 259:7755–60

    PubMed  CAS  Google Scholar 

  69. Liu B, Fang M, Schmidt M, Lu Y, Mendelsohn J, Fan Z. Induction of apoptosis and activation of the caspase cascade by anti-EGF receptor monoclonal antibodies in DiFi human colon cancer cells do not involve the c-jun N-terminal kinase activity. Br J Cancer 2000;82:1991–9

    Article  PubMed  CAS  Google Scholar 

  70. Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 1999; 59:1935–40

    PubMed  CAS  Google Scholar 

  71. Tortora G, Caputo R, Pomatico G, Pepe S, Bianco AR, Agrawal S, et al. Cooperative inhibitory effect of novel mixed backbone oligonucleotide targeting protein kinase A in combination with docetaxel and anti-epidermal growth factor-receptor antibody on human breast cancer cell growth. Clin Cancer Res 1999; 5:875–81

    PubMed  CAS  Google Scholar 

  72. Kawamoto T, Sato JD, Le A, et al. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci USA. 1983; 80:1337–1341

    Article  PubMed  CAS  Google Scholar 

  73. Sato JD, Kawamoto T, Le AD, et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med. 1983; 1:511–529

    PubMed  CAS  Google Scholar 

  74. Baselga J, Pfister D, Cooper MR, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol. 2000;18:904–914

    PubMed  CAS  Google Scholar 

  75. Hong WK, Arquette M, Nabell L, et al. Efficacy and safety of the anti-epidermal growth factor antibody IMC-225, in combination with cisplatin in patients with recurrent squamous cell carcinoma of the head and neck refractory to cisplatin containing chemotherapy. Program and abstracts of the 37th Annual Meeting of the American Society of Clinical Oncology; May 12–15, 2001; San Francisco, California. Abstract 895

    Google Scholar 

  76. Kim ES, Mauer A, Fosella FV, et al. A phase II trial of Erbitux (IMC-C225), an epidermal growth factor receptor (EGFR) blocking antibody, in combination with docetaxel in chemotherapy refractory/resistant patients with advanced non-small cell lung cancer. Program and abstracts of the 38th Annual Meeting of the American Society of Clinical Oncology; May 18–22, 2002; Orlando, Florida. Abstract 1165

    Google Scholar 

  77. Saltz L, Rubin M, Hochster H, et al. Cetuximab (IMC-225) plus irinotecan (CPT-11) is active in CPT-11 refractory colorectal cancer that expresses epidermal growth factor receptor. Program and abstracts of the 37th Annual Meeting of the American Society of Clinical Oncology; May 12–15, 2001; San Francisco, California. Abstract 7

    Google Scholar 

  78. Cunningham D, Humblet Y, Siena S, et al. Cetuximab (C225) alone or in combination with irinotecan (CPT-11) in patients with epidermal growth factor receptor (EGFR)-positive, irinotecan-refractory metastatic colorectal cancer (MCRC). Proc Am Soc Clin Oncol. 2003;22:252. Abstract 1012.

    Google Scholar 

  79. Burtness BA, Li Y, Flood W, et al. Phase III trial comparing cisplatin + placebo to C + anti-epidermal growth factor antibody (EGF-R) C225 in patients with metastatic recurrent head & neck cancer. Program and abstracts of the 38th Annual Meeting of the American Society of Clinical Oncology; May 18–22, 2002; Orlando, Florida. Abstract 901

    Google Scholar 

  80. Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol. 2002; 20(18 suppl): 1S–13S

    PubMed  CAS  Google Scholar 

  81. Pollack VA, Savage DM, Baker DA, et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther. 1999; 54:739–748

    Google Scholar 

  82. Iwata KK, Provoncha K, Gibson N. Inhibition of mutant EGFRvIII transformed cells by tyrosine kinase inhibitor OSI-774 (Tarceva) [Abstract No. 79]. Proc ASCO 2002;21

    Google Scholar 

  83. Hidalgo M, Siu LL, Nemunaitis J, et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol. 2001; 19:3267–3279

    PubMed  CAS  Google Scholar 

  84. Perez-Soler R, Chachoua A, Huberman M, et al. A phase II trial of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor OSI-774, following platinum-based chemotherapy, in patients (pts) with advanced, EGFR-expressing, non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol. 2001; 20:310a. Abstract 1235.

    Google Scholar 

  85. Finkler N, Gordon A, Crozier M, et al. Phase II evaluation of OSI-774, a potent oral antagonist of the EGFR-TK in patients with advanced ovarian carcinoma. Proc Am Soc Clin Oncol. 2001; 20:208a. Abstract 831

    Google Scholar 

  86. Senzer NN, Soulieres D, Siu L, et al. Phase II evaluation of OSI-774, a potent oral antagonist of the EGFR-TK in patients with advanced squamous cell carcinoma of the head and neck. Proc Am Soc Clin Oncol. 2001; 20:2a. Abstract 6

    Google Scholar 

  87. Clark GM, Perez-Soler R, Siu L, et al. Rash severity is predictive of increased survival with erlotinib HCl. Proc Am Soc Clin Oncol. 2003; 22:196. Abstract 786

    Google Scholar 

  88. Pedersen MW, Meltom M, Damstrup L, Poulsen HS. The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol. 2001; 12:745–760

    Article  PubMed  CAS  Google Scholar 

  89. Baselga J, Rischin D, Ranson M, et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD 1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol. 2002; 20:4292–4302

    Article  PubMed  CAS  Google Scholar 

  90. Herbst RS, Maddox AM, Rothenberg ML, et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD 1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol. 2002;20:3815–3825

    Article  PubMed  CAS  Google Scholar 

  91. Ranson M, Hammond LA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol. 2002; 20:2240–2250

    Article  PubMed  CAS  Google Scholar 

  92. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol. 2003; 21:2237–2246

    Article  PubMed  CAS  Google Scholar 

  93. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 2003; 290:2149–2158

    Article  PubMed  CAS  Google Scholar 

  94. Giaccone G, Johnson D, Manegold C, et al. A phase III clinical trial of ZD1839 ('IRESSA') in combination with gemcitabine and cisplatin in chemotherapy-naive patients with advanced non-small cell lung cancer (INTACT 1). Ann Oncol. 2002; 13(suppl 5):2. Abstract 40

    Google Scholar 

  95. Johnson DH, Herbst R, Giaccone G, et al. ZD1839 ('IRESSA') in combination with paclitaxel & carboplatin in chemotherapy naive patients with advanced non-small cell lung cancer (NSCLC): results from a phase III trial (INTACT 2). Ann Oncol. 2002; 13(suppl 5):127. Abstract 4680

    Google Scholar 

  96. Normanno N, Campiglio M, De Luca A et al. Cooperative inhibitory effect of ZD1839 (IRESSA) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. Ann Oncol 2002; 13:65–72

    Article  PubMed  CAS  Google Scholar 

  97. Anderson NG, Ahmad T, Chan K, Dobson R, Bundred NJ. ZD1839 (IRESSA), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int J Cancer 2001; 94:774–82

    Article  PubMed  CAS  Google Scholar 

  98. Normanno N, Campiglio M, De Luca A, Somenzi G, Maiello M, Ciardiello F, et al. Cooperative inhibitory effect of ZD1839 (IRESSA) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. Ann Oncol 2002; 13:65–72

    Article  PubMed  CAS  Google Scholar 

  99. Burris HA, Taylor C, Jones S, et al. A phase I study of GW572016 in patients with solid tumors. Proc Am Soc Clin Oncol. 2003; 22:248. Abstract 994

    Google Scholar 

  100. Belanger M, Jones CM, Germond C, et al. A phase II, open-label, multicenter study of GW572016 in patients with metastatic colorectal cancer refractory to 5-FU in combination with irinotecan and/or oxaliplatin. Proc Am Soc Clin Oncol. 2003; 22:244. Abstract 978

    Google Scholar 

  101. Gasparini G. Angiogenesis in breast cancer role in biology tumor progression and prognosis. Breast Cancer: Molecular Genetics Pathogenesis and Therapeutics. Totowa, NJ: Humana Press Inc; 1999:347–371

    Google Scholar 

  102. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993; 362:841–844

    Article  PubMed  CAS  Google Scholar 

  103. Warren RS, Yuan H, Matli MR, et al. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest. 1995; 95:1789–1797

    Article  PubMed  CAS  Google Scholar 

  104. Gordon MS, Margolin K, Talpaz M, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001; 19:843–850

    PubMed  CAS  Google Scholar 

  105. Sledge G, Miller K, Novotny W, et al. Phase II trial of single agent rhuMab VEGF in patients with relapsed metastatic breast cancer. Program and abstracts of the 36th Annual Meeting of the American Society of Clinical Oncology; May 20–23, 2000; San Francisco, California. Abstract 5C

    Google Scholar 

  106. Hurwitz H, FL FL, Cartwright T, et al. Bevacizumab (a monoclonal antibody to vascular endothelial growth factor) prolongs survival in first-line colorectal cancer (CRC): Results of a phase III trial of bevacizumab in combination with bolus IFL (irinotecan, 5-fluorouracil, leucovorin) as first-line therapy in subjects with metastatic CRC. Proc Am Soc Clin Oncol. 2003; 22. Abstract 3646

    Google Scholar 

  107. Miller KD, Rugo H, Cobleigh MA, et al. Phase III trial of capecitabine plus bevacizumab versus capecitabine alone in women with metastatic breast cancer previously treated with an anthracycline and a taxane. Breast Cancer Res Treat. 2002; 76(suppl 1):S37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Mayer, I.A. (2005). Targeting Cytokine Receptors and Pathways in the Treatment of Breast Cancer. In: Platanias, L.C. (eds) Cytokines and Cancer. Cancer Treatment and Research, vol 126. Springer, Boston, MA. https://doi.org/10.1007/0-387-24361-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-24361-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24360-3

  • Online ISBN: 978-0-387-24361-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics