Advertisement

Stable Critical Points for the Ginzburg Landau Functional on Some Plane Domains

  • M. K. Venkatesha Murthy
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 79)

Keywords

Elliptic System Connected Domain Elliptic Boundary Ginzburg Landau Equation Permanent Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon, A. Douglis, L. Nirenberg Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I and II, Comm. Pure Appl. Math. 12 (1959), 623–727 and Comm. Pure Appl. Math. 17 (1964), 35–92zbMATHMathSciNetGoogle Scholar
  2. [2]
    F. Bethuel, Aproximation problem for Sobolev maps between two manifolds, Acta Math., 167 (1991), 153–206CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    F. Bethuel, Some recent results for the Ginzburg Landau equations, Progr. Math., 168 (1998), Birkhauser, BaselGoogle Scholar
  4. [4]
    F. Bethuel, H. Brezis, G. Orlandi, Asymototics for Ginzburg Landau equations on arbitrary domains, J. Funct. Anal., 186 (2001), 432–520zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. Bethuel, H. Brezis, G. Orlandi, Small energy solutions of Ginzburg Landau equations, C.R. Acad. Sci., Paris, (2000)Google Scholar
  6. [6]
    F. Bethuel, X. Zhang, Density of smooth maps between two manifolds in Sobolev spaces, Jr. Func. Anal. 80 (1988), 60–75zbMATHCrossRefGoogle Scholar
  7. [7]
    A.P. Calderon, Uniqueness in the Cauchy problem for partial differential equations, Amer. J. of Math. 80 (1958), 16–36.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    V.L. Ginzburg, L.D. Landau, On the theory of super-condutivity J.E.T.P., 20 (1950)Google Scholar
  9. [9]
    S. Jimbo, Y. Morita, Ginzburg-Landau equation and stable solutions in irrotational domain, SIAM Jr. Math.Anal. 27 (1996), 1360–1385zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    S. Jimbo, J. Zhai, Ginzburg-Landau equation with magnetic effect: Non-simply-connected domains Jr. Math. Soc. Japan, 50 (1998), 663–684zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Jimbo, P. Sternberg, Non existence of permanent currents in convex planar samples, SIAM J. Math. Anal., 33 (2002), 1379–1392zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Matano, Asymptotic behavior and stability of solutions to semilinear diffusion equations, Pub. Res. Inst. Math. Sci. RIMS, Kyoto Univ. 15, (1979), 401–454zbMATHMathSciNetGoogle Scholar
  13. [13]
    J. Rubinstein, P. Sternberg, Homotopy classification of minimizers for Ginzburg Landau energy and existence of permanent currents, Comm. Math. Phys., 179 (1996), 257–263zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    G. Stampacchia, Le problème de Dirichlet pour les equations elliptiques du second ordre à coefficients discontnus, Ann. Inst. Fourier, Grenoble, 15 (1965), 189–258MathSciNetzbMATHGoogle Scholar
  15. [15]
    G. Stampacchia, Équations elliptiques du second ordre a coefficients discontinus, Séminaires Mathématiques Supérieurs, Le Presses de l’Université de Montreal, Que. 16 (1966)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. K. Venkatesha Murthy
    • 1
  1. 1.Dept. of MathematicsUniversity of PisaPisaItaly

Personalised recommendations