Advertisement

Zero Gravity Capillary Surfaces and Integral Estimates

  • G. M. Lieberman
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 79)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Finn, Existence and non existence of capillary surfaces, Manus. Math. 28 (1979), 1–11.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Finn, “Equilibrium Capillary Surfaces”, Springer-Verlag, Berlin, 1986.zbMATHGoogle Scholar
  3. [3]
    R. Finn, Existence criteria for capillary free surfaces without gravity, Indiana Univ. Math. J. 32 (1983), 439–460.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    R. Finn and A. A. Kosmodem’yanskii, jr., Some unusual comparison properties of capillary surfaces, Pac. J. Math. 205 (2002), 119–137.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Springer-Verlag, Berlin, 1977; second edition, 1983.zbMATHGoogle Scholar
  6. [6]
    E. Giusti, boundary value problems for non-parametric surfaces of prescribed mean curvature, Ann. Scuola Norm. Sup Pisa 3 (1976), 501–548.zbMATHMathSciNetGoogle Scholar
  7. [7]
    D. Kinderlehrer and G. Stampacchia, “An Introduction to Variational Inequalities and their Applications”, Academic Press, New York, 1980.zbMATHGoogle Scholar
  8. [8]
    N.J. Korevaar, Maximum principle gradient estimates for the capillary problem, Comm. Partial Differential Equations 13 (1988), 1–13.zbMATHMathSciNetGoogle Scholar
  9. [9]
    A.A. Kosmodem’yanskii, jr., The comparison of capillary surfaces heights in case of small gravity, Nonlinear Anal. 43 (2001), 937–942.CrossRefMathSciNetGoogle Scholar
  10. [10]
    O.A. Ladyzhenskaya and N.N. Ural’tseva, “Linear and Quasilinear Elliptic Equations”, Nauka, Moscow, 1964 [Russian]; English transl. Academic Press, New York, 1968.zbMATHGoogle Scholar
  11. [11]
    G.M. Lieberman, The conormal derivative problem for elliptic equations of variational type, J. Differential Equations 49 (1983), 218–257.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    G.M. Lieberman, Hölder continuity of the gradient at a corner for the capillary problem and related results, Pac. J. Math. 133 (1988), 115–135.zbMATHMathSciNetGoogle Scholar
  13. [13]
    G.M. Lieberman, The conormal derivative problem for non-uniformly parabolic equations, Indiana Univ. Math. 37 (1988), 23–72.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    G.M. Lieberman, The conormal derivative problem for equations of variational type in nonsmooth domains, Trans. Amer. Math. Soc. 330 (1991), 41–67.CrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Malý and W.P. Ziemer, “Fine Regularity of Solutions of Elliptic Partial Differential Equations”, American Mathematical Society, Providence, R. I., 1997.zbMATHGoogle Scholar
  16. [16]
    D. Siegel, The behavior of a capillary surface for small Bond number, in Variational Methods for Free Surface Interfaces, Springer-Verlag, New York 1987, pp. 109–113.Google Scholar
  17. [17]
    N.N. Ural’tseva, Solvability of the capillary problem II, Vestnik Leningrad. Univ. Mat. Mekh. Astron. 1 (1975), 143–149 ([Russian]; English transl. in Vestnik Leningrad Univ. Math. 8 (1980), 151–158).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • G. M. Lieberman
    • 1
  1. 1.Dept. of MathematicsIowa State UniversityAmesUSA

Personalised recommendations