Zero Gravity Capillary Surfaces and Integral Estimates

  • G. M. Lieberman
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 79)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Finn, Existence and non existence of capillary surfaces, Manus. Math. 28 (1979), 1–11.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Finn, “Equilibrium Capillary Surfaces”, Springer-Verlag, Berlin, 1986.zbMATHGoogle Scholar
  3. [3]
    R. Finn, Existence criteria for capillary free surfaces without gravity, Indiana Univ. Math. J. 32 (1983), 439–460.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    R. Finn and A. A. Kosmodem’yanskii, jr., Some unusual comparison properties of capillary surfaces, Pac. J. Math. 205 (2002), 119–137.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Springer-Verlag, Berlin, 1977; second edition, 1983.zbMATHGoogle Scholar
  6. [6]
    E. Giusti, boundary value problems for non-parametric surfaces of prescribed mean curvature, Ann. Scuola Norm. Sup Pisa 3 (1976), 501–548.zbMATHMathSciNetGoogle Scholar
  7. [7]
    D. Kinderlehrer and G. Stampacchia, “An Introduction to Variational Inequalities and their Applications”, Academic Press, New York, 1980.zbMATHGoogle Scholar
  8. [8]
    N.J. Korevaar, Maximum principle gradient estimates for the capillary problem, Comm. Partial Differential Equations 13 (1988), 1–13.zbMATHMathSciNetGoogle Scholar
  9. [9]
    A.A. Kosmodem’yanskii, jr., The comparison of capillary surfaces heights in case of small gravity, Nonlinear Anal. 43 (2001), 937–942.CrossRefMathSciNetGoogle Scholar
  10. [10]
    O.A. Ladyzhenskaya and N.N. Ural’tseva, “Linear and Quasilinear Elliptic Equations”, Nauka, Moscow, 1964 [Russian]; English transl. Academic Press, New York, 1968.zbMATHGoogle Scholar
  11. [11]
    G.M. Lieberman, The conormal derivative problem for elliptic equations of variational type, J. Differential Equations 49 (1983), 218–257.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    G.M. Lieberman, Hölder continuity of the gradient at a corner for the capillary problem and related results, Pac. J. Math. 133 (1988), 115–135.zbMATHMathSciNetGoogle Scholar
  13. [13]
    G.M. Lieberman, The conormal derivative problem for non-uniformly parabolic equations, Indiana Univ. Math. 37 (1988), 23–72.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    G.M. Lieberman, The conormal derivative problem for equations of variational type in nonsmooth domains, Trans. Amer. Math. Soc. 330 (1991), 41–67.CrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Malý and W.P. Ziemer, “Fine Regularity of Solutions of Elliptic Partial Differential Equations”, American Mathematical Society, Providence, R. I., 1997.zbMATHGoogle Scholar
  16. [16]
    D. Siegel, The behavior of a capillary surface for small Bond number, in Variational Methods for Free Surface Interfaces, Springer-Verlag, New York 1987, pp. 109–113.Google Scholar
  17. [17]
    N.N. Ural’tseva, Solvability of the capillary problem II, Vestnik Leningrad. Univ. Mat. Mekh. Astron. 1 (1975), 143–149 ([Russian]; English transl. in Vestnik Leningrad Univ. Math. 8 (1980), 151–158).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • G. M. Lieberman
    • 1
  1. 1.Dept. of MathematicsIowa State UniversityAmesUSA

Personalised recommendations