A Variational Inequality Scheme for Determining an Economic Equilibrium of Classical or Extended Type

  • A. Jofre
  • R. T. Rockafellar
  • R. J. -B. Wets
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 79)


The existence of an equilibrium in an extended Walrasian economic model of exchange is confirmed constructively by an iterative scheme. In this scheme, truncated variational inequality problems are solved in which the agents’ budget constraints are relaxed by a penalty representation. Epi-convergence arguments are employed to show that, in the limit, a virtual equilibrium is obtained, if not actually a classical equilibrium. A number of technical hurdles are, in this way, surmounted.

Key words

variational inequalities Walras exchange equilibrium virtual equilibrium epi-convergence penalization equilibrium computations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.J. Arrow, G. Debreu, Existence of an equilibrium for a competitive economy. Econometrica, Vol.22 (1954), 265–290.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Dafermos, Exchange price equilibria and variational inequalities. Mathematical Programming, Vol.46 (1990), 391–402.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    G. Debreu, Theory of Valu, (Wiley, 1959).Google Scholar
  4. [4]
    G. Debreu, New concepts and techniques for equilibrium analysis. Chapter 10 of Mathematical Economics (Econometric Soc. Monographs, No. 4), 1983.Google Scholar
  5. [5]
    A.D. Dontchev, R.T. Rockafellar, Ample parameterization of variational inclusions. SIAM J. Optimization, Vol.12 (2002), 170–187.CrossRefMathSciNetGoogle Scholar
  6. [6]
    F. Facchinei, J.-S. Pang, Finite-dimensional variational inequalities and complementarity problems. Vols. I and II, Springer Series in Operations Research. Springer-Verlag, New York, 2003.Google Scholar
  7. [7]
    M. Florig, On irreducible economies. Annales d’Économie et de Statistique, Vol.61 (2001), 184–199.Google Scholar
  8. [8]
    M. Florig, Hierarchic competitive equilibria. Journal of Mathematical Economics, Vol.35 (2001), 515–546.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P.T. Harker, J.-S. Pang, Finite-dimensional variational inequalities and nonlinear complementarity problems: A survey of theory, algorithms and applications. Mathematical Programming, Ser. B, Vol.48 (1990), 161–220.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    J.-S. Pang, Computing generalized Nash equilibria. Preprint, 2002.Google Scholar
  11. [11]
    J.-S. Pang, M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Preprint, 2002.Google Scholar
  12. [12]
    R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.Google Scholar
  13. [13]
    Oiko Nomia, Existence of Walras equilibria: the excess demand approach, Cahiers MSE, University of Paris I, 1996.Google Scholar
  14. [14]
    R.T. Rockafellar, R. J-B Wets, Variational Analysis, Springer-Verlag, Berlin, 1997.Google Scholar
  15. [15]
    H.E. Scarf, The approximate fixed points of a continuous mapping. SIAM J. Applied Math., Vol.15 (1967), 1328–1343.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    H.E. Scarf, The Computation of Economic Equilibria, Yale University Press, 1973.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. Jofre
    • 1
  • R. T. Rockafellar
    • 2
  • R. J. -B. Wets
    • 3
  1. 1.Center for Mathematical Modelling and Dept. of Mathematical EngineeringUniversity of ChileSantiagoChile
  2. 2.Dept. of MathematicsUniversity of WashingtonSeattleUSA
  3. 3.Dept. of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations