Advertisement

First-Order Conditions for C0,1 Constrained Vector Optimization

  • I. Ginchev
  • A. Guerraggio
  • M. Rocca
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 79)

Abstract

For a Fritz John type vector optimization problem with C 0,1 data we give scalar characterizations of its solutions applying the so called oriented distance and give necessary and sufficient first order optimality conditions in terms of the Dini derivative. While establishing the sufficiency, we introduce new type of efficient points referred to as isolated minimizers of first order. We show that the obtained necessary conditions are necessary for weak efficiency, and the sufficient conditions are sufficient and under Kuhn-Tucker type constraint qualification also necessary for a point to be an isolated minimizer of first order.

Key words

Vector optimization Nonsmooth optimization C0,1 functions Dini derivatives First-order optimality conditions Lagrange multipliers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Amahroq, A. Taa: On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems. Optimization 41 (1997), 159–172.zbMATHMathSciNetGoogle Scholar
  2. [2]
    A. Auslender: Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22 (1984), 239–254.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    M. Ciligot-Travain: On Lagrange-Kuhn-Tucker multipliers for Pareto optimization problems. Numer. Funct. Anal. Optim. 15 (1994), 689–693.MathSciNetGoogle Scholar
  4. [4]
    I. Ginchev, A. Guerraggio, M. Rocca: From scalar to vector optimization. Appl. Math., to appear.Google Scholar
  5. [5]
    I. Ginchev, A. Hoffmann: Approximation of set-valued functions by single-valued one. Discussiones Mathematicae, Differential Inclusions, Control and Optimization 22 (2002), 33–66.zbMATHMathSciNetGoogle Scholar
  6. [6]
    A. Guerraggio, D. T. Luc: Optimality conditions for C 1,1 vector optimization problems. J. Optim. Theory Appl. 109 No. 3 (2001), 615–629.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J.-B. Hiriart-Urruty, J.-J Strodiot, V. Hien Nguen: Generalized Hessian matrix and second order optimality conditions for problems with C 1,1 data. Appl. Math. Optim. 11 (1984), 169–180.CrossRefGoogle Scholar
  8. [8]
    J.-B. Hiriart-Urruty: New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France 60 (1979), 57–85.MathSciNetGoogle Scholar
  9. [9]
    J.-B. Hiriart-Urruty: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4 (1979), 79–97.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    F. John: Extremum problems with inequalities as subsidiary conditions. In: K. O. Friedrichs, O. E. Neugebauer, J. J. Stroker (eds.), Studies and Essays, Courant Anniversary Volume, pp. 187–204, Interscience Publishers, New York, 1948.Google Scholar
  11. [11]
    D. Klatte, K. Tammer: On the second order sufficient conditions to perturbed C 1,1 optimization problems. Optimization 19 (1988), 169–180.zbMATHMathSciNetGoogle Scholar
  12. [12]
    H. W. Kuhn, A. W. Tucker: Nonlinear programming. In: J. Neyman (Ed.), Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492, University of California Press. Berkeley, California, 1951Google Scholar
  13. [13]
    L. Liu, P. Neittaanmäki, M. Křířek: Second-order optimality conditions for nondominated solutions of multiobjective programming with C 1,1 data. Appl. Math. 45 (2000), 381–397.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    D. T. Luc: Taylor’s formula for C k,1 functions. SIAM J. Optimization 5 No. 3 (1995), 659–669.zbMATHCrossRefGoogle Scholar
  15. [15]
    O. L. Mangasarian: Nonlinear programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994.zbMATHGoogle Scholar
  16. [16]
    E. Miglierina: Characterization of solutions of multiobjective optimization problems. Rendiconti Circolo Matematico di Palermo, 50 (2001), 153–164.zbMATHMathSciNetGoogle Scholar
  17. [17]
    E. Miglierina, E. Molho: Scalarization and its stability in vector optimization. J. Optim. Theory Appl., 114 (2002), 657–670.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M. Pappalardo, W. Stocklin: Necessary optimality conditions in nondifferentiable vector optimization. Optimization 50 (2001), 233–251.zbMATHMathSciNetGoogle Scholar
  19. [19]
    R. T. Rockafellar: Convex analysis. Princeton University Press, Princeton, 1970.zbMATHGoogle Scholar
  20. [20]
    X. Q. Yang, V. Jeyakumar: Generalized second-order directional derivatives and optimization with C 1,1 functions. Optimization 26 (1992), 165–185.zbMATHMathSciNetGoogle Scholar
  21. [21]
    X. Q. Yang: Second-order conditions in C 1,1 optimization with applications. Numer. Funct. Anal. Optim. 14 (1993), 621–632.zbMATHMathSciNetGoogle Scholar
  22. [22]
    A. Zaffaroni: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42 No. 3 (2003), 1071–1086.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • I. Ginchev
    • 1
  • A. Guerraggio
    • 2
  • M. Rocca
    • 2
  1. 1.Department of MathematicsTechnical University of VarnaVarnaBulgaria
  2. 2.Department of EconomicsUniversity of InsubriaVareseItaly

Personalised recommendations