Skip to main content

Variational Control Problems with Constraints Via Exact Penalization

  • Chapter
Variational Analysis and Applications

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 79))

Abstract

The Exact Penalization approach to solving constrained problems of Calculus of Variations described in [17] is extended to the case of variational problems where the functional and the constraints contain a control function. The constraints are of both the equality- and inequality-type constraints. The initial constrained problem is reduced to an unconstrained one. The related unconstrained problem is essentially nonsmooth. Necessary optimality conditions are derived.

The work was supported by the Russian Foundation for Fundamental Studies (RFFI) under Grant No 03-01-00668.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bliss G.A. (1946), Lectures on the Calculus of Variations. Chicago, Univ. of Chicago Press.

    MATH  Google Scholar 

  2. Boukary D., Fiacco A.V. (1995), Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993. Optimization, Vol. 32, No. 4, pp. 301–334.

    MathSciNet  Google Scholar 

  3. Demyanov V.F., Vasiliev L.V. (1985) Nondifferentiable optimization. New-York, Springer-Optimization Software.

    MATH  Google Scholar 

  4. Demyanov V.F. (1992), Nonsmooth problems in Calculus of Variations. In Lecture Notes in Economics and Math. Systems, v. 382. Advances in Optimization. Eds. W. Oettli, D. Pallaschke, pp. 227–238. Berlin, Springer Verlag.

    Google Scholar 

  5. Demyanov V.F. (1992a), Calculus of Variations in nonsmooth presentation. In Nonsmooth Optimization: Methods and Applications. Ed. F. Giannessi, pp. 76–91. Singapore, Gordon and Breach.

    Google Scholar 

  6. Demyanov V.F. (1994), Exact penalty functions in nonsmooth optimization problems. Vestnik of St. Petersburg University, ser. 1, issue 4 (No. 22), pp. 21–27.

    Google Scholar 

  7. Demyanov V.F. (2000), Conditions for an extremum and variational problems. St. Petersburg, St. Petersburg University Press.

    Google Scholar 

  8. Demyanov V.F. (2003) Constrained problems of Calculus of Variations via Penalization Technique. In: Equilibrium Problems and Variational Models. A. Maugeri, F. Giannessi (Eds.), pp. 79–108. Kluwer Academic Publishers.

    Google Scholar 

  9. Demyanov V.F., Di Pillo G., Facchinei F. (1998), Exact penalization via Dini and Hadamard conditional derivatives. Optimization Methods and Software, Vol. 9, pp. 19–36.

    MATH  MathSciNet  Google Scholar 

  10. Demyanov V.F., Giannessi F., and Karelin V.V. (1998), Optimal Control Problems via Exact Penalty Functions. Journal of Global Optimization, Vol. 12, No. 3, pp.215–223.

    Article  MathSciNet  Google Scholar 

  11. Demyanov V.F., Rubinov A.M. (1995), Constructive Nonsmooth Analysis. Frankfurt a/M., Peter Lang Verlag.

    MATH  Google Scholar 

  12. Di Pillo G., Facchinei F. (1989), Exact penalty functions for nondifferentiable programming problems. In Nonsmooth Optimization and Related Topics. Eds. F.H. Clarke, V.F. Demyanov and F. Giannessi, pp. 89–107. New York, Plenum.

    Google Scholar 

  13. Eremin I.I. (1966), On the penalty method in convex programming. In Abstracts of ICM-66. Section 14., Moscow, 1966.

    Google Scholar 

  14. Eremin I.I. (1967). A method of “penalties” in Convex Programming. Soviet Mathematics Doklady (4), 748–751.

    MathSciNet  Google Scholar 

  15. Fletcher R. (1983), Penalty functions. In Mathematical programming: the state of the art. (Eds. A. Bachen, M. Grötschel, B. Korte), Springer-Verlag, Berlin, pp. 87–114.

    Google Scholar 

  16. Han S., Mangasarian O. (1979), Exact penalty functions in nonlinear programming. Mathematical Programming, Vol.17, pp. 251–269.

    Article  MATH  MathSciNet  Google Scholar 

  17. Hestenes M.R. (1966), Calculus of Variations and Optimal Control Theory. New York, John Wiley & Sons.

    MATH  Google Scholar 

  18. Kaplan A.A., Tichatschke R. (1994), Stable methods for ill-posed variational problems. Berlin, Akademie Verlag.

    MATH  Google Scholar 

  19. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., and Mishchenko E.F. (1962), The Mathematical theory of Optimal Processes. New York, Interscience Publishers.

    MATH  Google Scholar 

  20. Rockafellar R.T. (1970) Convex Analysis. Princeton. N.J., Princeton University Press.

    MATH  Google Scholar 

  21. Zangwill W.L. (1967), Nonlinear programming via penalty functions. Management Science, Vol. 13, pp. 344–358.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Demyanov, V.F., Giannessi, F., Tamasyan, G.S. (2005). Variational Control Problems with Constraints Via Exact Penalization. In: Giannessi, F., Maugeri, A. (eds) Variational Analysis and Applications. Nonconvex Optimization and Its Applications, vol 79. Springer, Boston, MA. https://doi.org/10.1007/0-387-24276-7_21

Download citation

Publish with us

Policies and ethics