Skip to main content

Deduction, Perception, and Modeling

The Two Peirces on the Essence of Mathematics

  • Chapter
Activity and Sign

Abstract

Charles Sanders Peirce, the celebrated philosopher of pragmatics and semiotics, viewed mathematics as the basic science. But, according to him — what is it?

In providing an answer, he gave reference to his father Benjamin Peirce, a leading Harvard mathematician. Charles quoted him with: Mathematics is the science which draws necessary conclusions. However, he went further than his father’s position by asking what is necessary reasoning. His analysis led him from the clean world of pure reasoning to the more down-to-earth circumstances of perception and experimentation. Even deductive reasoning proceeds by using signs and their iconic qualities and is based on the perception and experimental manipulation of diagrams. Moreover, Peirce accomplished a pragmatic shift that was oriented toward mathematical practice and especially included the process of modeling as a mathematical key activity.

This Peircean standpoint will be explored in more detail, and it will be shown (so I hope) that it offers a perspective for a genetic philosophy with an impact on the didactics of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apel, K.-O. (1981). Charles S. Peirce: From Pragmatism to Pragmaticism. Amherst: The University of Massachusetts Press.

    Google Scholar 

  • Brent, J. (1998). Charles Sanders Peirce. A Life. Bloomington and Indianapolis: Indiana University Press.

    Google Scholar 

  • Chandrasekaran, B. e. a. (Ed.) (1995). Diagrammatic reasoning: cognitive and computational perspectives. Menlo Park, Calif.: AAAI Press.

    Google Scholar 

  • Corfield, D. (2003). Towards a Philosophy of Real Mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Engel-Tiercelin, C. (1993). Peirce’s Realistic Approach to Mathematics: Or, Can One Be a Realist without Being a Platonist? In E. C. Moore. (Ed.), Charles S. Peirce and the Philosophy of Science. Papers from the Harvard Sesquicentennial Congress. Tuscaloosa and London: The University of Alabama Press, 30–48.

    Google Scholar 

  • Fann, K. T. (1970). Peirce’s Theory of Abduction. The Hague: Nijhoff.

    Google Scholar 

  • Friedman, M. (1992). Kant and the Exact Sciences. Cambridge, Mass.: Harvard Univ. Press.

    Google Scholar 

  • Giere, R. N. (1999). Science without laws. Chicago: The Univ. of Chicago Pr.

    Google Scholar 

  • Grattan-Guinness, I. (1997). Peirce between Logic and Mathematics. In N. Houser, D. D. Roberts, & J. van Evra (Eds.), Studies in the Logic of Charles Sanders Peirce. Bloomington and Indianapolis, Indiana University Press, 23–42.

    Google Scholar 

  • Hoffmann, M. H. G. (2002). How to get it. Diagrammatic reasoning as a tool of knowledge development and its pragmatic dimension. Foundations of Science, in print.

    Google Scholar 

  • Hull, K. (1994). Why Hanker After Logic? Mathematical Imagination, Creativity and Perception in Peirce’s Systematic Philosophy. Transactions of the Charles S. Peirce Society 30, 271–295.

    Google Scholar 

  • Lenhard, J. (2004). Kants Philosophic der Mathematik und die umstrittene Rolle der Anschauung. [Kant’s Philosophy of Mathematics and the controversial role of intuition.] Kantstudien, to appear.

    Google Scholar 

  • Lenhard, J. and Otte, M. (2003). Grenzen der Mathematisierung — von der grundlegenden Bedeutung der Anwendungen. [Limits of Mathematization — on the Fundamental Role of Applications.] Manuscript.

    Google Scholar 

  • Murphey, M. G. (1993). The Development of Peirce’s Philosophy. Indianapolis, Cambridge: Hackett Publish Comp.

    Google Scholar 

  • Otte, M. (1997). Mathematik und Verallgemeinerung — Peirces semiotisch-pragmatische Sicht. [Mathematics and Generalization — Peirce’s Semiotic-Pragmatic View.] Philosophia naturalis 34, 175–222.

    Google Scholar 

  • Otte, M. (2002). Proof-Analysis and the Development of Geometrical Thought. Representations and Mathematics Visualization. F. Hitt. Mexico: Cinvestav-IPN.

    Google Scholar 

  • Peirce, C. S. (CP). Collected Papers of Charles Sanders Peirce. Cambridge, Mass.: Harvard UP.

    Google Scholar 

  • Radu, M. (2003). Peirces Didaktik der Arithmetik: Möglichkeiten ihrer semiotischen Grundlegung. [Peirce’s Didactic of Arithmetic: Possible Foundations in Semiotic.] Mathematik verstehen — Semiotische Perspektiven. M. H. G. Hoffmann. Hildesheim, Franzbecker: 160–194.

    Google Scholar 

  • Stjernfelt, F. (2000). Diagrams as Centerpiece of a Peircean Epistemology. Transaction C.S.P.Society 36(3): 357–392.

    Google Scholar 

  • Ulam, S. (1986). The Applicability of Mathematics. Science, computers and people. G.-C. R. Mark C. Reynolds. Boston, Birkhäuser: 1–8.

    Google Scholar 

  • Van Kerkhove, B. (2003). Mathematical Naturalism: Origins, Guises, and Prospects. Foundations of Science. To appear.

    Google Scholar 

  • Weiss, P. (1934). C. S. Peirce. Dictionary of American Biography, 14, 398–403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lenhard, J. (2005). Deduction, Perception, and Modeling. In: Hoffmann, M.H., Lenhard, J., Seeger, F. (eds) Activity and Sign. Springer, Boston, MA. https://doi.org/10.1007/0-387-24270-8_27

Download citation

Publish with us

Policies and ethics