Skip to main content

A New Class of Proximal Algorithms for the Nonlinear Complementarity Problem

  • Conference paper
Optimization and Control with Applications

Part of the book series: Applied Optimization ((APOP,volume 96))

  • 2496 Accesses

Abstract

In this paper, we consider a new variable proximal regularization method for solving the nonlinear complementarity problem(NCP) for P 0 functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Palais, R.S. and Terng, C.L. (1988), Critical point theory and submanifold geometry, Lecture Note in Mathematics, 1353, Springer Verlag, Berlin.

    Google Scholar 

  • Cottle, R.W., Pang, J.S. and Stone, R.E. (1992), The Linear Complementarity Problem, Academic Press, New York.

    MATH  Google Scholar 

  • Rapcsák, T. (1997), Smooth Nonlinear Optimization in Rn, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Udriste, C. (1994), Convex Functions and Optimization Methods in Riemannian Geometry, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Bayer, D.A. and Lagarias, J.C. (1989), The Nonlinear Geometry of Linear Programming I, Affine and Projective Scaling Trajectories, Transactions of the American Mathematical Society, Vol. 314, No 2, pp. 499–526.

    Article  MathSciNet  MATH  Google Scholar 

  • Bayer, D.A. and Lagarias, J.C. (1989), The Nonlinear Geometry of Linear Programming II, Legendre Transform Coordinates and Central Trajectories, Transactions of the American Mathematical Society, Vol. 314, No 2, pp. 527–581.

    Article  MathSciNet  MATH  Google Scholar 

  • Cruz Neto, J.X. and Oliveira, P.R. (1995), Geodesic Methods in Riemannian Manifolds, Preprint, RT 95–10, PESC/COPPE — Federal University of Rio de Janeiro, BR

    Google Scholar 

  • Cruz Neto, J. X., Lima, L.L. and Oliveira, P. R. (1998), Geodesic Algorithm in Riemannian Manifold, Balkan JournaL of Geometry and Applications, Vol. 3, No 2, pp. 89–100.

    MathSciNet  MATH  Google Scholar 

  • Ferreira, O.P. and Oliveira, P.R. (1998), Subgradient Algorithm on Riemannian Manifold, Journal of Optimization Theory and Applications, Vol. 97, No 1, pp. 93–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira, O.P. and Oliveira, P.R. (2002), Proximal Point Algorithm on Riemannian Manifolds, Optimization, Vol. 51, No 2, pp. 257–270.

    MathSciNet  MATH  Google Scholar 

  • Gabay, D. (1982), Minimizing a Differentiable Function over a Differential Manifold, Journal of Optimization Theory and Applications, Vol. 37, No 2, pp. 177–219.

    Article  MATH  MathSciNet  Google Scholar 

  • Karmarkar, N. (1990), Riemannian Geometry Underlying Interior-Point Methods for Linear Programming, Contemporary Mathematics, Vol. 114, pp. 51–75.

    MATH  MathSciNet  Google Scholar 

  • Karmarkar, N. (1984), A New Polynomial-Time Algorithm for Linear Programming, Combinatorics, Vol. 4, pp. 373–395.

    MATH  MathSciNet  Google Scholar 

  • Nesterov, Y.E. and Todd, M. (2002), On the Riemannian Geometry Defined by self-Concordant Barriers and Interior-Point Methods, Preprint

    Google Scholar 

  • Dikin, I.I. (1967), Iterative Solution of Problems of Linear and Quadratic Programming, Soviet Mathematics Doklady, Vol. 8, pp. 647–675.

    Google Scholar 

  • Eggermont, P.P.B. (1990), Multiplicative Iterative Algorithms for Convex Programming, Linear Algebra and its Applications, Vol. 130, pp. 25–42.

    Article  MATH  MathSciNet  Google Scholar 

  • Oliveira, G.L. and Oliveira, P.R. (2002), A New Class of Interior-Point Methods for Optimization Under Positivity Constraints, TR PESC/COPPE-FURJ, preprint

    Google Scholar 

  • Pinto, A.W.M., Oliveira, P.R. and Cruz Neto, J. X. (2002), A New Class of Potential Affine Algorithms for Linear Convex Programming, TR PESC/COPPE-FURJ, preprint

    Google Scholar 

  • Moré, J.J. and Rheinboldt, W.C. (1973), On P-and S-functions and related classes of n-dimensional nonlinear mappings, Linear Algebra Appl., Vol. 6, pp. 45–68.

    Article  MATH  Google Scholar 

  • Harker, P.T. and Pang, J.S. (1990), Finite dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Mathematical Programming, Vol. 48, pp. 161–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar, R.T. (1976), Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, Vol. 14, pp. 877–898.

    Article  MATH  MathSciNet  Google Scholar 

  • Martinet, B. (1970), Regularisation d'inequations variationelles par approximations sucessives, Revue Frangaise d'Informatique et de Recherche Operationelle, Vol. 4, pp. 154–159.

    MATH  MathSciNet  Google Scholar 

  • Facchinei, F. (1998), Strutural and stability properties of P 0 nonlinear complementarity problems, Mathematics of Operations Research, Vol. 23, pp. 735–745.

    Article  MATH  MathSciNet  Google Scholar 

  • Facchinei, F. and Kanzow, C. (1999), Beyond Monotonicity in regularization methods for nonlinear complementarity problems, SIAM Journal on Control and Optimization, Vol. 37, pp. 1150–1161.

    Article  MathSciNet  MATH  Google Scholar 

  • Yamashita, N., Imai, I. and Fukushima, M. (2001), The proximal point algorithm for the P 0 complementarity problem, Complementarity: Algorithms and extensions, Edited by Ferris, M.C., Mangasarian, O. L. and Pang, J. S., Kluwer Academic Publishers, pp. 361–379.

    Google Scholar 

  • Kanzow, C. (1996), Global convergence properties of some iterative methods for linear complementarity problems, SIAM Journal of Optimization, Vol. 6, pp. 326–341.

    Article  MATH  MathSciNet  Google Scholar 

  • Moré, J.J. (1974), Coercivity conditions in nonlinear complementarity problem, SIAM Rev., Vol. 16, pp. 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  • Fischer, A. (1992), A special Newton-type optimization method, Optmization, Vol. 24, pp. 269–284.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Da Silva, G., Oliveira, P. (2005). A New Class of Proximal Algorithms for the Nonlinear Complementarity Problem. In: Qi, L., Teo, K., Yang, X. (eds) Optimization and Control with Applications. Applied Optimization, vol 96. Springer, Boston, MA. https://doi.org/10.1007/0-387-24255-4_28

Download citation

Publish with us

Policies and ethics