Skip to main content

SQP versus SCP Methods for Nonlinear Programming

  • Conference paper
Optimization and Control with Applications

Part of the book series: Applied Optimization ((APOP,volume 96))

Abstract

We introduce two classes of methods for constrained smooth nonlinear programming that are widely used in practice and that are known under the names SQP for sequential quadratic programming and SCP for sequential convex programming. In both cases, convex subproblems are formulated, in the first case a convex quadratic programming problem, in the second case a convex and separable nonlinear program. An augmented Lagrangian merit function can be applied for stabilization and for guaranteeing convergence. The methods are outlined in a uniform way, convergence results are cited, and the results of a comparative performance evaluation are shown based on a set of 306 standard test problems. In addition a few industrial applications and case studies are listed that are obtained for the two computer codes under consideration, i.e., NLPQLP and SCPIP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bendsøe M.P. (1989): Optimal shape design as a material distribution problems, Structural Optimization, Vol. 1, 193–202.

    Article  Google Scholar 

  • Bendsøe M.P. (1995): Optimization of Structural Topology, Shape and Material, Springer, Heidelberg.

    Google Scholar 

  • Boderke P., Schittkowski K., Wolf M., Merkle H.P. (2000): Modeling of diffusion and concurrent metabolism in cutaneous tissue, Journal on Theoretical Biology, Vol. 204, No. 3, 393–407.

    Article  Google Scholar 

  • Birk J., Liepelt M., Schittkowski K., Vogel F. (1999): Computation of optimal feed rates and operation intervals for tubular reactors, Journal of Process Control, Vol. 9, 325–336.

    Article  Google Scholar 

  • Blatt M., Schittkowski K. (1998): Optimal Control of One-Dimensional Partial Differential Equations Applied to Transdermal Diffusion of Substrates, in: Optimization Techniques and Applications, L. Caccetta, K.L. Teo, P.F. Siew, Y.H. Leung, L.S. Jennings, V. Rehbock eds., School of Mathematics and Statistics, Curtin University of Technology, Perth, Australia, Vol. 1, 81–93.

    Google Scholar 

  • Bongartz I., Conn A.R., Gould N., Toint Ph. (1995): CUTE: Constrained and unconstrained testing environment, Transactions on Mathematical Software, Vol. 21, No. 1, 123–160.

    Article  MATH  Google Scholar 

  • Bünner M., Schittkowski K., van de Braak G. (2002): Optimal design of surface acoustic wave filters for signal processing by mixed integer nonlinear programming, submitted for publication.

    Google Scholar 

  • Edgar T.F., Himmelblau D.M. (1988): Optimization of Chemical Processes, McGraw Hill.

    Google Scholar 

  • Fleury C. (1989): An efficient dual optimizer based on convex approximation concepts, Structural Optimization, Vol. 1, 81–89.

    Article  Google Scholar 

  • Fleury C., Braibant V. (1986): Structural Optimization — a new dual method using mixed variables, International Journal for Numerical Methods in Engineering, Vol. 23, 409–428.

    Article  MathSciNet  MATH  Google Scholar 

  • Frias J.M., Oliveira J.C, Schittkowski K. (2001): Modelling of maltodextrin DE12 drying process in a convection oven, Applied Mathematical Modelling, Vol. 24, 449–462.

    Article  Google Scholar 

  • Goldfarb D., Idnani A. (1983): A numerically stable method for solving strictly convex quadratic programs, Mathematical Programming, Vol. 27, 1–33.

    MathSciNet  MATH  Google Scholar 

  • Gould N.I.M., Toint P.L. (2000): SQP methods for large-scale nonlinear programming, in: System Modelling and Optimization: Methods, Theory and Applications, M.J.D. Powell, S. Scholtes eds., Kluwer.

    Google Scholar 

  • Han S.-P. (1976): Superlinearly convergent variable metric algorithms for general nonlinear programming problems, Mathematical Programming, Vol. 11, 263–282.

    Article  MathSciNet  Google Scholar 

  • Han S.-P. (1977): A globally convergent method for nonlinear programming, Journal of Optimization Theory and Applications, Vol. 22, 297–309.

    Article  MATH  MathSciNet  Google Scholar 

  • Hartwanger C., Schittkowski K., Wolf H. (2000): Computer aided optimal design of horn radiators for satellite communication, Engineering Optimization, Vol. 33, 221–244.

    Google Scholar 

  • Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer.

    Google Scholar 

  • Hock W., Schittkowski K. (1983): A comparative performance evaluation of 27 nonlinear programming codes, Computing, Vol. 30, 335–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Kneppe G., Krammer J., Winkler E. (1987): Structural optimization of large scale problems using MBB-LAGRANGE, Report MBB-S-PUB-305, Messerschmitt-Bölkow-Blohm, Munich.

    Google Scholar 

  • Loth H., Schreiner Th., Wolf M., Schittkowski K., Schäfer U. (2001): Fitting drug dissolution measurements of immediate release solid dosage forms by numerical solution of differential equations, submitted for publication.

    Google Scholar 

  • Mlejnek H.P. (1992): Some aspects of the genesis of structures, Structural Optimization, Vol. 5, 64–69.

    Article  Google Scholar 

  • Nguyen V.H., Strodiot J.J., Fleury C. (1987): A mathematical convergence analysis for the convex linearization method for engineering design optimization, Engineering Optimization, Vol. 11, 195–216.

    Google Scholar 

  • Ortega J.M., Rheinboldt W.C. (1970): Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York-San Francisco-London.

    MATH  Google Scholar 

  • Papalambros P.Y., Wilde D.J. (2000): Principles of Optimal Design, Cambridge University Press.

    Google Scholar 

  • Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimization calculations, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in Mathematics, Vol. 630, Springer.

    Google Scholar 

  • Powell M.J.D. (1978): The convergence of variable metric methods for nonlinearly constrained optimization calculations, in: Nonlinear Programming 3, O.L. Mangasarian, R.R. Meyer, S.M. Robinson eds., Academic Press.

    Google Scholar 

  • Powell M.J.D. (1983): On the quadratic programming algorithm of Goldfarb and Idnani. Report DAMTP 1983/Na 19, University of Cambridge, Cambridge.

    Google Scholar 

  • Rockafellar R.T. (1974): Augmented Lagrange multiplier functions and duality in non-convex programming, Journal on Control, Vol. 12, 268–285.

    MATH  MathSciNet  Google Scholar 

  • Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 183 Springer.

    Google Scholar 

  • Schittkowski K. (1981): The nonlinear programming method of Wilson, Han and Powell. Part 1: Convergence analysis, Numerische Mathematik, Vol. 38, 83–114.

    Article  MATH  MathSciNet  Google Scholar 

  • Schittkowski K. (1981): The nonlinear programming method of Wilson, Han and Powell. Part 2: An efficient implementation with linear least squares subproblems, Numerische Mathematik, Vol. 38, 115–127.

    Article  MATH  MathSciNet  Google Scholar 

  • Schittkowski K. (1983): Theory, implementation and test of a nonlinear programming algorithm, in: Optimization Methods in Structural Design, H. Eschenauer, N. Olhoff eds., Wissenschaftsverlag.

    Google Scholar 

  • Schittkowski K. (1983): On the convergence of a sequential quadratic programming method with an augmented Lagrangian search direction, Optimization, Vol. 14, 197–216.

    MATH  MathSciNet  Google Scholar 

  • Schittkowski K. (1985): On the global convergence of nonlinear programming algorithms, ASME Journal of Mechanics, Transmissions, and Automation in Design, Vol. 107, 454–458.

    Article  Google Scholar 

  • Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained nonlinear programming problems, Annals of Operations Research, Vol. 5, 485–500.

    Article  MathSciNet  Google Scholar 

  • Schittkowski K. (1987a): More Test Examples for Nonlinear Programming, Lecture Notes in Economics and Mathematical Systems, Vol. 182, Springer.

    Google Scholar 

  • Schittkowski K. (1987): New routines in MATH/LIBRARY for nonlinear programming problems, IMSL Directions, Vol. 4, No. 3.

    Google Scholar 

  • Schittkowski K. (1988): Solving nonlinear least squares problems by a general purpose SQP-method, in: Trends in Mathematical Optimization, K.-H. Hoffmann, J.-B. Hiriart-Urruty, C. Lemarechal, J. Zowe eds., International Series of Numerical Mathematics, Vol. 84, Birkhdiuser, 295–309.

    Google Scholar 

  • Schittkowski K. (1992): Solving nonlinear programming problems with very many constraints, Optimization, Vol. 25, 179–196.

    MATH  MathSciNet  Google Scholar 

  • Schittkowski K. (1994): Parameter estimation in systems of nonlinear equations, Numerische Mathematik, Vol. 68, 129–142.

    Article  MATH  MathSciNet  Google Scholar 

  • Schittkowski K. (2001): NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm for Parallel Computing, Report, Department of Mathematics, University of Bayreuth.

    Google Scholar 

  • Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems, Kluwer.

    Google Scholar 

  • Schittkowski K., Zillober C., Zotemantel R. (1994): Numerical comparison of nonlinear programming algorithms for structural optimization, Structural Optimization, Vol. 7, No. 1, 1–28.

    Article  Google Scholar 

  • Spellucci P. (1993): Numerische Verfahren der nichtlinearen Optimierung, Birkhäuser.

    Google Scholar 

  • Stoer J. (1985): Foundations of recursive quadratic programming methods for solving nonlinear programs, in: Computational Mathematical Programming, K. Schittkowski, ed., NATO ASI Series, Series F: Computer and Systems Sciences, Vol. 15, Springer.

    Google Scholar 

  • Svanberg K. (1987): The Method of Moving Asymptotes — a new method for Structural Optimization, International Journal for Numerical Methods in Engineering, Vol. 24, 359–373.

    Article  MATH  MathSciNet  Google Scholar 

  • Zillober Ch. (1993): A globally convergent version of the Method of Moving Asymptotes, Structural Optimization, Vol. 6, 166–174.

    Article  Google Scholar 

  • Zillober Ch. (2001a): Global convergence of a nonlinear programming method using convex approximations, Numerical Algorithms, Vol. 27, 256–289.

    Article  MathSciNet  Google Scholar 

  • Zillober Ch. (2001b): A combined convex approximation — interior point approach for large scale nonlinear programming, Optimization and Engineering, Vol. 2, 51–73.

    Article  MATH  MathSciNet  Google Scholar 

  • Zillober Ch. (2001c): Software manual for SCPIP 2.3, Report, Department of Mathematics, University of Bayreuth.

    Google Scholar 

  • Zillober Ch. (2002): SCPIP — an efficient software tool for the solution of structural optimization problems, Structural and Multidisciplinary Optimization, Vol. 24, No. 5, 362–371.

    Article  Google Scholar 

  • Zillober Ch., Vogel F. (2000a): Solving large scale structural optimization problems, in: Proceedings of the 2nd ASMO UK/ISSMO Conference on Engineering Design Optimization, J. Sienz ed., University of Swansea, Wales, 273–280.

    Google Scholar 

  • Zillober Ch., Vogel F. (2000b): Adaptive strategies for large scale optimization problems in mechanical engineering, in: Recent Advances in Applied and Theoretical Mathematics, N. Mastorakis ed., World Scientific and Engineering Society Press, 156–161.

    Google Scholar 

  • Zillober Ch., Schittkowski K., Moritzen K. (2002): Very large scale optimization by sequential convex programming, submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Schittkowski, K., Zillober, C. (2005). SQP versus SCP Methods for Nonlinear Programming. In: Qi, L., Teo, K., Yang, X. (eds) Optimization and Control with Applications. Applied Optimization, vol 96. Springer, Boston, MA. https://doi.org/10.1007/0-387-24255-4_14

Download citation

Publish with us

Policies and ethics