Advertisement

The Saalschütz Chain Reactions and Multiple q-Series Transformations

  • C H U Wenchang
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 13)

Abstract

By recursive use of the q-Saalschütz summation formula, we investigate further the Saalschütz chain reactions introduced by the author in (Chu, 2002). Some general series transformations which express basic terminating series in terms of finite multiple sums will be established. As applications, we derive by means of Jackson's 6ϕ5-series identity three transformations including one due to Andrews (1975). These transformations yield further a number of multiple Rogers-Ramanujan identities, whose research was initiated and developed mainly by Andrews and Bressoud from the middle of seventieth up to now.

Keywords

Lattice Path Series Transformation Basic Hypergeometric Series CBMS Regional Conference Series Bailey Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, A. K., Andrews, G. E., and Bressoud, D. M. (1987). The Bailey lattice. J. Indian Math. Soc. (N.S.), 51:57–73.MathSciNetGoogle Scholar
  2. Agarwal, A. K. and Bressoud, D. M. (1989). Lattice paths and multiple basic hyper-geometric series. Pacific J. Math., 136:209–228.MathSciNetGoogle Scholar
  3. Andrews, G. E. (1974). An analytic generalization of the Rogers-Ramanujan identities for odd moduli. Proc. Nat. Acad. Sci. U.S.A., 71:4082–4085.zbMATHMathSciNetGoogle Scholar
  4. Andrews, G. E. (1975). Problems and prospects for basic hypergeometric functions. In Askey, R., editor, The Theory and Applications of Special Functions, pages 191–224. Academic Press, New York.Google Scholar
  5. Andrews, G. E. (1976). The Theory of Partitions, volume 2 of Encyclopedia of Math. and Appl. Cambridge University Press, Cambridge.Google Scholar
  6. Andrews, G. E. (1979a). Connection coefficient problems and partitions. In Relations between combinatorics and other parts of mathematics (Proc. Sympos. Pure Math., Ohio State Univ., Columbus, Ohio, 1978), Proc. Sympos. Pure Math., XXXIV, pages 1–24. Amer. Math. Soc., Providence, RI.Google Scholar
  7. Andrews, G. E. (1979b). Partitions and Durfee dissection. Amer. J. Math., 101(3):735–742.zbMATHMathSciNetGoogle Scholar
  8. Andrews, G. E. (1981). Multiple q-series identities. Houston J. Math., 7(1):11–22.zbMATHMathSciNetGoogle Scholar
  9. Andrews, G. E. (1984). Multiple series Rogers-Ramanujan type identities. Pacific J. Math., 114(2):267–283.zbMATHMathSciNetGoogle Scholar
  10. Andrews, G. E. (1986). q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, volume 66 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC.Google Scholar
  11. Bailey, W. N. (1935). Generalized Hypergeometric Series. Cambridge University Press, Cambridge.Google Scholar
  12. Bailey, W. N. (1947). Some identities in combinatory analysis. Proc. London Math. Soc. (2), 49:421–435.zbMATHMathSciNetGoogle Scholar
  13. Bailey, W. N. (1948). Identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2), 50:1–10.zbMATHMathSciNetGoogle Scholar
  14. Bressoud, D. M. (1980a). Analytic and combinatorial generalizations of the Rogers-Ramanujan identities. Mem. Amer. Math. Soc., 24(227):54.MathSciNetGoogle Scholar
  15. Bressoud, D. M. (1980b). An analytic generalization of the Rogers-Ramanujan identities with interpretation. Quart. J. Math. Oxford Ser. 2, 31:385–399.zbMATHMathSciNetGoogle Scholar
  16. Bressoud, D. M. (1981). On partitions, orthogonal polynomials and the expansion of certain infinite products. Proc. London Math. Soc. (3), 42:478–500.zbMATHMathSciNetGoogle Scholar
  17. Bressoud, D. M. (1988). The Bailey lattice: an introduction. In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), pages 57–67. Academic Press, Boston, MA.Google Scholar
  18. Bressoud, D. M. (1989). Lattice paths and the Rogers-Ramanujan identities. In Number theory, Madras 1987, volume 1395 of Lecture Notes in Mathematics, pages 140–172. Springer-Verlag, Berlin-New York.Google Scholar
  19. Bressoud, D. M., Ismail, M., and Stanton, D. (2000). Change of base in Bailey pairs. Ramanujan J., 4(4):435–453.CrossRefMathSciNetGoogle Scholar
  20. Chu, W. (2002). The Saalschütz chain reactions and bilateral basic hypergeometric series. Constructive Approx., 18:579–598.CrossRefzbMATHGoogle Scholar
  21. Garrett, T., Ismail, M., and Stanton, D. (1999). Variants of the Rogers-Ramanujan identities. Adv. Appl. Math., 23(3):274–299.CrossRefMathSciNetGoogle Scholar
  22. Gessel, I. and Stanton, D. (1983). Applications of q-Lagrange inversion to basic hypergeometric series. Trans. Amer. Math. Soc., 277:173–201.CrossRefMathSciNetGoogle Scholar
  23. Milne, S. C. (1980). A multiple series transformation of the very well poised 4+2kΨ2k+4. Pacific J. Math., 91:419–430.zbMATHMathSciNetGoogle Scholar
  24. Schilling, A. and Warnaar, S. O. (1997). A higher-level Bailey lemma: Proof and application. Preprint.Google Scholar
  25. Slater, L. J. (1951). A new proof of Rogers' transformations of infinite series. Proc. London Math. Soc. (2), 53:460–475.zbMATHMathSciNetGoogle Scholar
  26. Slater, L. J. (1952). Further identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2), 54:147–167.zbMATHMathSciNetGoogle Scholar
  27. Slater, L. J. (1966). Generalized Hypergeometric Functions. Cambridge University Press, Cambridge.Google Scholar
  28. Stanton, D. (2001). The Bailey-Rogers-Ramanujan group, volume 291 of Contemporary Mathematics, pages 55–70. Amer. Math. Soc., Providence, RI.Google Scholar
  29. Stembridge, J. R. (1990). Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities. Trans. Amer. Math. Soc., 319:469–498.CrossRefzbMATHMathSciNetGoogle Scholar
  30. Warnaar, S. O. (2001). The generalized Borwein conjecture I: The Burge transform, volume 291 of Contemporary Mathematics, pages 243–267. Amer. Math. Soc., Providence, RI.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • C H U Wenchang
    • 1
  1. 1.Department of Applied MathematicsDalian University of TechnologyDalianP.R. China

Personalised recommendations