Advertisement

Remarks on Some Basic Hypergeometric Series

  • Changgui Zhang
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 13)

Abstract

Many results in Mathematical Analysis seem to come from some “obvious” computations. For a few years, we have been interested in the analytic theory of linear q-difference equations. One of the problems we are working on is the analytical classification of q-difference equations. Recall that this problem was already considered by G. D. Birkhoff and some of his students ((Birkhoff, 1913), (Birkhoff and Güenther, 1941)). An important goal of these works is to be able to derive transcendental analytical invariants from the divergent power series solutions; that is, to be able to define a good concept of Stokes' multiplier for divergent q-series! Very recently, we noted ((Zhang, 2002), (Ramis et al., 2003)) that this problem can be treated in a satisfactory manner by a new summation theory of divergent power series through the use of Jacobian theta functions and some basic integral calculus. The purpose of the present article is to explain how much “obvious” this mechanism of summation may be if one practises some elementary calculations on q-series. It would be a very interesting question to understand (Di Vizio et al., 2003) whether Ramanujan's mysterious formulas are related to this transcendental invariant analysis…

Keywords

Power Series Theta Function Laurent Series Removable Singularity Convergent Power Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askey, R. (1978). The q-gamma and q-beta functions. Appl. Anal., 8:125–141.zbMATHMathSciNetGoogle Scholar
  2. Birkhoff, G. D. (1913). The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations. Proc. Am. Acad., 49:521–568.zbMATHGoogle Scholar
  3. Birkhoff, G. D. and Güenther, P. E. (1941). Note on a canonical form from the linear q-difference system. Proc. Nat. Acad. of Sci., 27:218–222.Google Scholar
  4. Di Vizio, L., Ramis, J.-P., Sauloy, J., and Zhang, C. (2003). Equations aux q-différences. Gazette des mathématiciens (SMF), 96:20–49.Google Scholar
  5. Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series. Encycl. Math. Appl. Cambridge Univ. Press, Cambridge.Google Scholar
  6. Ramis, J.-P. (1992). About the growth of entire functions solutions of linear algebraic q-difference equations. Annales de la Fac. de Toulouse Math. (6), I(1):53–94.MathSciNetGoogle Scholar
  7. Ramis, J.-P., Sauloy, J., and Zhang, C. (2003). Classification analytique locale des équations aux q-différences. In preparation.Google Scholar
  8. Ramis, J.-P. and Zhang, C. (2002). Développement asymptotique q-Gevrey et fonction thêta de Jacobi. C. R. Acad. Sci. Paris, 335(11):899–902.MathSciNetGoogle Scholar
  9. Zhang, C. (2000). Transformations de q-Borel-Laplace au moyen de la fonction thêta de Jacobi. C. R. Acad. Sci. Paris Sér. I Math., 331:31–34.zbMATHGoogle Scholar
  10. Zhang, C. (2001). Sur la fonction q-Gamma de Jackson. Aequationes Math., 62:60–78.CrossRefzbMATHMathSciNetGoogle Scholar
  11. Zhang, C. (2002). Une sommation discrète pour des équations aux q-différences linéaires et à coefficients analytiques: théorie générale et examples. In Braaksma, B. L. J., Immink, G. K., der Put, M. V., and Top, J., editors, Proceedings of the Conference on Differential Equations and the Stokes Phenomenon (Groningen, 28–30 May 2001), pages 309–329. World Scientific.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Changgui Zhang
    • 1
  1. 1.Laboratoire AGAT (UMR — CNRS 8524) UFR Math.Université des Sciences et Technologies de LilleVilleneuve d'Ascq cedexFrance

Personalised recommendations