Abel-Rothe Type Generalizations of Jacobi's Triple Product Identity

  • Michael Schlosser
Part of the Developments in Mathematics book series (DEVM, volume 13)


Using a simple classical method we derive bilateral series identities from terminating ones. In particular, we show how to deduce Ramanujan's 1ψ1 summation from the q-Pfaff-Saalschütz summation. Further, we apply the same method to our previous q-Abel-Rothe summation to obtain, for the first time, Abel-Rothe type generalizations of Jacobi's triple product identity. We also give some results for multiple series.


q-series bilateral series Jacobi's triple product identity Ramanujan's 1ψ1 summation q-Rothe summation q-Abel summation Macdonald identities Ar series U(n) series 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, N. H. (1826). Beweis eines Ausdrucks, von welchem die Binomial-Formel ein einzelner Fall ist. J. Reine Angew. Math., 1:159–160.zbMATHGoogle Scholar
  2. Andrews, G. E. (1974). Applications of basic hypergeometric functions. SIAM Rev., 16:441–484.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Bailey, W. N. (1936). Series of hypergeometric type which are infinite in both directions. Quart. J. Math. Oxford Series, 7:105–115.zbMATHGoogle Scholar
  4. Bailey, W. N. (1950). On the basic bilateral hypergeometric series 2ψ2. Quart. J. Math. Oxford Series 2, 1:194–198.zbMATHMathSciNetGoogle Scholar
  5. Bhatnagar, G. and Milne, S. C. (1997). Generalized bibasic hypergeometric series and their u(n) extensions. Adv. Math., 131:188–252.CrossRefMathSciNetzbMATHGoogle Scholar
  6. Bhatnagar, G. and Schlosser, M. (1998). C n, and D n. very-well-poised 10ϕ9 transformations. Constr. Approx., 14:531–567.CrossRefMathSciNetzbMATHGoogle Scholar
  7. Bressoud, D. M. (1999). Proofs and Confirmations. Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  8. Bromwich, T. J. (1949). An Introduction to the Theory of Infinite Series. Macmillan, London, second edition.Google Scholar
  9. Cauchy, A.-L. (1843). Mémoire sur les functions dont plusieurs valeurs …. C.R. Acad. Sci. Paris, 17:523. Reprinted in Oeuvres de Cauchy, Ser. 1, vol. 8, Gauthier-Villars, Paris (1893), 42–50.Google Scholar
  10. Euler, L. (1779). De series Lambertiana plurimisque eius insignibus proprietatibus. Acta Acad. Sci. Petro. II (1783), 29–51; reprinted in Opera Omnia, Ser. I, vol. 6, Teubner, Leibzig (1921), 350–369.Google Scholar
  11. Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series, volume 35 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  12. Gould, H. W. (1956). Some generalizations of Vandermonde's convolution. Amer. Math. Monthly, 63:84–91.CrossRefzbMATHMathSciNetGoogle Scholar
  13. Gould, H. W. (1957). Final analysis of Vandermonde's convolution. Amer. Math. Monthly, 64:409–415.CrossRefzbMATHMathSciNetGoogle Scholar
  14. Hahn, W. (1949). Beiträge zur Theorie der Heineschen Reihen. Die hypergeometrische q-Differenzengleichung. Das q-Analogon der Laplace-Transformation. Math. Nachr., 2:340–379.zbMATHMathSciNetGoogle Scholar
  15. Hardy, G. H. (1940). Ramanujan. Cambridge University Press, Cambridge. Reprinted by: Chelsea, New York, 1978.Google Scholar
  16. Ismail, M. E. H. (1977). A simple proof of Ramanujan's 1ψ1 sum. Proc. Amer. Math. Soc., 63:185–186.CrossRefzbMATHMathSciNetGoogle Scholar
  17. Jackson, F. H. (1910). A q-generalization of Abel's series. Rend. Circ. Math. Palermo, 29:340–346.zbMATHCrossRefGoogle Scholar
  18. Jackson, M. (1950). On Lerch's transcendent and the basic bilateral hypergeometric series 2ψ2. J. London Math. Soc., 25:189–196.zbMATHMathSciNetGoogle Scholar
  19. Jacobi, C. G. J. (1829). Fundamenta Nova Theoriae Functionum Ellipticarum. Unknown. Reprinted in Jacobi's Gesammelte Werke, vol. 1, (Reimer, Berlin, 1881–1891), pp. 49–239; reprinted by Chelsea (New York, 1969); now distributed by the Amer. Math. Soc., Providence, RI.Google Scholar
  20. Johnson, W. P. (1996). q-Extensions of identities of Abel-Rothe type. Discrete Math., 159:161–177.CrossRefzbMATHMathSciNetGoogle Scholar
  21. Krattenthaler, C. and Schlosser, M. (1999). A new multidimensional matrix inverse with applications to multiple q-series. Discrete Math., 204:249–279.CrossRefMathSciNetzbMATHGoogle Scholar
  22. Lambert, J. H. (1758). Observationes variae in mathesin puram. Acta Helvetica, 3:128–168.Google Scholar
  23. Milne, S. C. (1985). An elementary proof of the Macdonald identities for A l(1). Adv. Math., 57:34–70.CrossRefzbMATHMathSciNetGoogle Scholar
  24. Milne, S. C. (1997). Balanced 3ϕ2 summation theorems for U(n) basic hypergeometric series. Adv. Math., 131:93–187.CrossRefzbMATHMathSciNetGoogle Scholar
  25. Milne, S. C. and Schlosser, M. (2002). A new A n extension of Ramanujan's 1ψ1 summation with applications to multilateral A n, series. Rocky Mount. J. Math., 32(2):759–792.MathSciNetzbMATHGoogle Scholar
  26. Pólya, G. and Szegő, G. (1925). Aufgaben und Lehrstitze aus der Analysis, Band I Julius Springer, Berlin.Google Scholar
  27. Rosengren, H. (2003). Reduction formulae for Karlsson-Minton type hypergeometric functions. Constr. Approx. To appear.Google Scholar
  28. Rothe, H. A. (1793). Formulae de serierum reversione demonstration universalis signis localibus combinatorico-analyticorum vicariis exhibit. Leipzig.Google Scholar
  29. Schlosser, M. (1997). Multidimensional matrix inversions and A r, and D r basic hypergeometric series. Ramanujan J., 1:243–274.CrossRefzbMATHMathSciNetGoogle Scholar
  30. Schlosser, M. (1999). Some new applications of matrix inversions in A r. Ramanujan J., 3:405–461.CrossRefzbMATHMathSciNetGoogle Scholar
  31. Schlosser, M. (2000). A new multidimensional matrix inversion in A r. In q-series from a contemporary perspective (South Hadley, MA, 1998), volume 254 of Contemp. Math., pages 413–432. Amer. Math. Soc., Providence, RI.Google Scholar
  32. Slater, L. J. (1966). Generalized Hypergeometric Functions. Cambridge Univ. Press, London/New York.zbMATHGoogle Scholar
  33. Strehl, V. (1992). Identities of Rothe-Abel-Schläfli-Hurwitz-type. Discrete Math., 99:321–340.CrossRefzbMATHMathSciNetGoogle Scholar
  34. Weil, A. (1976). Elliptic functions according to Eisenstein and Kronecker. Springer-Verlag, Berlin. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 88.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Michael Schlosser
    • 1
  1. 1.Institute für Mathematik der Universität WienWienAustria

Personalised recommendations