The Hilbert Space Asymptotics of a Class of Orthonormal Polynomials on a Bounded Interval

  • S. N. M. Ruijsenaars
Part of the Developments in Mathematics book series (DEVM, volume 13)


We study the asymptotics of orthonormal polynomials {p n (cos x)} n=0 , associated with a certain class of weight functions \(w\left( \mathfrak{X} \right) = 1/c\left( \mathfrak{X} \right)c\left( { - \mathfrak{X}} \right)\) on [0, π]. Our principal result is that the norm of the difference of pn(cos x) and \(D_n \left( \mathfrak{X} \right) \equiv c\left( \mathfrak{X} \right)e^{in\mathfrak{X}} + c\left( { - \mathfrak{X}} \right)e^{ - in\mathfrak{X}} \) in L2([0, π], (2π)−1ω(x)dx) vanishes exponentially as n → ∞. The decay rate is determined by analyticity properties of the c-function.


Weight Function Exponential Decay Orthogonal Polynomial Schwarz Inequality Jacobi Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Askey, R. A. and Wilson, J. A. (1985). Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc., 54(319).Google Scholar
  2. Deift, P. (1999). Orthogonal polynomials and random matrices: A Riemann-Hilbert approach, volume 3 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York, NY.Google Scholar
  3. Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series, volume 35 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press, Cambridge.Google Scholar
  4. Higgins, J. R. (1977). Completeness and basis properties of sets of special functions, volume 72 of Cambridge Tracts in Mathematics. Cambridge Univ. Press, Cambridge.Google Scholar
  5. Ismail, M. E. H. (1986). Asymptotics of the Askey-Wilson and q-Jacobi polynomials. SIAM J. Math. Anal., 17:1475–1482.CrossRefzbMATHMathSciNetGoogle Scholar
  6. Ismail, M. E. H. and Wilson, J. A. (1982). Asymptotic and generating relations for the q-Jacobi and 4ϕ3 polynomials. J. Approx. Theory, 36:43–54.CrossRefMathSciNetGoogle Scholar
  7. Koekoek, R. and Swarttouw, R. F. (1994). The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. report 94–05, Delft University of Technology.Google Scholar
  8. Kuijlaars, A. B. J. (2003). Riemann-Hilbert analysis for orthogonal polynomials. In Koelink, E. and van Assche, W., editors, Summer School on Orthogonal Polynomials and Special Functions, Leuven 2002, Lecture Notes in Mathematics. Springer-Verlag. To appear.Google Scholar
  9. Kuijlaars, A. B. J., McLaughlin, K. T.-R., van Assche, W., and Vanlessen, M. (2003). The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [−1, 1]. math.CA/0111252. Preprint.Google Scholar
  10. Ruijsenaars, S. N. M. (2002). Factorized weight functions vs. factorized scattering. Comm. Math. Phys., 228:467–494.CrossRefzbMATHMathSciNetGoogle Scholar
  11. Ruijsenaars, S. N. M. (2003). Relativistic Lamé functions: Completeness vs. polynomial asymptotics. Indag. Math. N.S., 11(3). Special issue dedicated to Tom Koornwinder.Google Scholar
  12. Szegő, G. (1975). Orthogonal polynomials, volume XXIII of Colloquium Publications. American Mathematical Society, Providence, RI, fourth edition.Google Scholar
  13. van Diejen, J. F. (2003). Asymptotic analysis of (partially) orthogonal polynomials associated with root systems. Intern. Math. Res. Notices, (7):387–410.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. N. M. Ruijsenaars
    • 1
  1. 1.Centre for Mathematics and Computer ScienceAmsterdamThe Netherlands

Personalised recommendations