The Little q-Jacobi Functions of Complex Order

  • Kevin W. J. Kadell
Part of the Developments in Mathematics book series (DEVM, volume 13)


We use Ismail's argument and an elementary combinatorial identity to prove the q-binomial theorem, the symmetry of the Rogers-Fine function, Ramanujan's 1ψ1 sum, and Heine's q-Gauss sum and give many other proofs of these results. We prove a special case of Heine's 2ϕ1 transformation and write Ramanujan's 1ψ1 sum as the nonterminating q-Chu-Vandermonde sum. We show that the q-SaalschÜtz and q-Chu-Vandermonde sums are equivalent to the evaluations of certain moments and to the orthogonality of the little q-Jacobi polynomials; hence the q-Chu-Vandermonde sum implies the q-Saalschütz sum. We extend the little q-Jacobi polynomials naturally to the little q-Jacobi functions of complex order. We show that the nonterminating q-Saalschütz and q-Chu-Vandermonde sums are equivalent to the evaluations of certain moments and, using the Liouville-Ismail argument, to two orthogonality relations. We show that the nonterminating q-Chu-Vandermonde sum implies the nonterminating q-Saalschütz sum.


little q-Jacobi polynomials basic hypergeometric functions bilateral basic hypergeometric functions q-binomial theorem Rogers-Fine symmetric function Ramanujan's 1ψ1 sum Heine's q-Gauss sum and 2ϕ1 transformation q-Chu-Vandermonde sum q-Saalschütz sum nonterminating sum and Macdonald Bidenharn-Louck Heckman-Opdam Koornwinder and Sahi-Knop polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, G. (1991). A short proof of Selberg's generalized beta formula. Forum Math., 3:415–417.zbMATHMathSciNetCrossRefGoogle Scholar
  2. Andrews, G. E. (1965). A simple proof of Jacobi's triple product identity. Proc. Amer Math. Soc., 16:333–334.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Andrews, G. E. (1969). On Ramanujan's summation of 1ψ1 (a; b; z). Proc. Amer. Math Soc., 22:552–553.CrossRefzbMATHMathSciNetGoogle Scholar
  4. Andrews, G. E. (1972). Two theorems of Gauss and allied identities proved arithmetically. Pacific J. Math., 41:563–568.zbMATHMathSciNetGoogle Scholar
  5. Andrews, G. E. (1998). The Theory of Partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge. Reprint of the 1976 original.zbMATHGoogle Scholar
  6. Andrews, G. E. and Askey, R. (1977). Enumeration of partitions: the role of Eulerian series and q-orthogonal polynomials. In Aigner, M., editor, Higher Combinatorics, pages 3–26. Reidel, Boston, Mass.Google Scholar
  7. Andrews, G. E. and Askey, R. (1978). A simple proof of Ramanujan's summation of the 1ψ1. Aequationes Math., 18:333–337.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Andrews, G. E. and Askey, R. (1981). Another q-extension of the beta function. Proc Amer. Math. Soc., 81:97–102.CrossRefMathSciNetzbMATHGoogle Scholar
  9. Aomoto, K. (1987). Jacobi polynomials associated with Selberg's integral. SIAM J. Math. Anal., 18:545–549.CrossRefzbMATHMathSciNetGoogle Scholar
  10. Askey, R. (1978). The q-gamma and q-beta functions. Appl. Anal., 8:125–141.zbMATHMathSciNetGoogle Scholar
  11. Askey, R. (1980). Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal., 11:938–951.CrossRefzbMATHMathSciNetGoogle Scholar
  12. Askey, R. and Ismail, M. E.-H. (1979). The very well poised 6ψ6. Proc. Amer. Math. Soc., 77:218–222.CrossRefMathSciNetGoogle Scholar
  13. Askey, R. and Wilson, J. (1985). Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc., 54(319):iv+55.MathSciNetGoogle Scholar
  14. Atakishiyev, N. M., Rahman, M., and Suslov, S. K. (1995). On classical orthogonal polynomials. Constr. Approx., 11:181–226.CrossRefMathSciNetzbMATHGoogle Scholar
  15. Baker, T. H. and Forrester, P. J. (1999). Transformation formulas for multivariable basic hypergeometric series. Methods Appl. Anal., 6(2):147–164. Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part II.MathSciNetzbMATHGoogle Scholar
  16. Biedenharn, L. C. and Louck, J. D. (1989). A new class of symmetric polynomials defined in terms of tableaux. Adv. in Appl. Math., 10:396–438.CrossRefMathSciNetzbMATHGoogle Scholar
  17. Evans, R. (1994). Multidimensional beta and gamma integrals. Contemp. Math., 166:341–357.zbMATHGoogle Scholar
  18. Fine, N. J. (1988). Basic Hypergeometric Series and Applications, volume 27 of Mathematical Surveys and Monographs. Amer. Math. Soc., Providence, RI.zbMATHGoogle Scholar
  19. Garvan, F. and Gonnet, G. (1991). Macdonald's constant term conjectures for exceptional root systems. Bull. Amer. Math. Soc. (N.S.), 24:343–347.MathSciNetzbMATHGoogle Scholar
  20. Garvan, F. G. (1989a). A beta integral associated with the root system g2. SIAM J. Math. Anal., 19:1462–1474.CrossRefMathSciNetGoogle Scholar
  21. Garvan, F. G. (1989b). A proof of the Macdonald-Morris root system conjecture for f 4. SIAM J. Math. Anal., 21:803–821.CrossRefMathSciNetGoogle Scholar
  22. Gasper, G. (1997). Elementary derivations of summation and transformation formulas for q-series. In Ismail, M. E. H., Masson, D. R., and Rahman, M., editors, Special Functions, q-Series and Related Topics (Toronto, ON, 1995), volume 14 of Fields Instit. Commun., pages 55–70. Amer. Math. Soc., Providence, RI.Google Scholar
  23. Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series. Cambridge Univ. Press, Cambridge.zbMATHGoogle Scholar
  24. Gustafson, R. A. (1990). A generalization of Selberg's beta integral. Bull. Amer. Math. Soc. (N.S.), 22:97–105.zbMATHMathSciNetCrossRefGoogle Scholar
  25. Habsieger, L. (1986). La q-conjecture de Macdonald-Morris pour g 2. C. R. Acad. Sci. Paris Sér. I Math., 303:211–213.zbMATHMathSciNetGoogle Scholar
  26. Habsieger, L. (1988). Une q-intégrale de Selberg-Askey. SIAM J. Math. Anal., 19:1475–1489.CrossRefzbMATHMathSciNetGoogle Scholar
  27. Hahn, W. (1949). Über polynome, die gleichzeitig zwei verschieclen orthogonalsystemen angehören. Math. Nachr., 2:263–278.zbMATHMathSciNetGoogle Scholar
  28. Heckman, G. J. (1987). Root systems and hypergeometric functions II. Compositio Math., 64:353–373.zbMATHMathSciNetGoogle Scholar
  29. Heckman, G. J. and Opdam, E. M. (1987). Root systems and hypergeometric functions I. Compositio Math., 64:329–352.MathSciNetzbMATHGoogle Scholar
  30. Heine, E. (1847). Üntersuchungen über die Riehe …. J. reine angew. Math., 34:285–328.zbMATHGoogle Scholar
  31. Heine, E. (1878). Handbuch der Kugelfunctionen, Theorie und Anwendungen, volume 1. Reimer, Berlin.Google Scholar
  32. Hille, E. (1973). Analytic Function Theory, volume 1. Chelsea, New York, second edition.zbMATHGoogle Scholar
  33. Hua, L. K. (1963). Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, volume 6 of Transl. Math. Monogr. Amer. Math. Soc., Providence, RI.Google Scholar
  34. Ismail, M. E.-H. (1977). A simple proof of Ramanujan's 1ψ1 summation formula. Proc. Amer. Math. Soc., 63:185–186.CrossRefzbMATHMathSciNetGoogle Scholar
  35. Ismail, M. E.-H. and Rahman, M. (1995). Some basic bilateral series and integrals. Pacific J. Math., 170:497–515.MathSciNetzbMATHGoogle Scholar
  36. Jackson, F. H. (1910). On q-definite integrals. Quart. J. Pure Appl. Math., 41:193–203.zbMATHGoogle Scholar
  37. Joichi, J. T. and Stanton, D. (1989). An involution for Jacobi's identity. Discrete Math., 73:261–271.CrossRefMathSciNetzbMATHGoogle Scholar
  38. Kadell, K. W. J. (1987a). Path functions and generalized basic hypergeometric functions. Mem. Amer. Math. Soc., 65(360):iv+54.MathSciNetGoogle Scholar
  39. Kadell, K. W. J. (1987b). A probabilistic proof of Ramanujan's 1ψ1 sum. SIAM J. Math. Anal., 18:1539–1548.CrossRefzbMATHMathSciNetGoogle Scholar
  40. Kadell, K. W. J. (1988a). A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris. SIAM J. Math. Anal., 19:969–986.CrossRefzbMATHMathSciNetGoogle Scholar
  41. Kadell, K. W. J. (1988b). The q-Selberg polynomials for n = 2. Trans. Amer. Math. Soc., 310(2):535–553.CrossRefzbMATHMathSciNetGoogle Scholar
  42. Kadell, K. W. J. (1993). An integral for the product of two Selberg-Jack symmetric polynomials. Compositio Math., 87:5–43.zbMATHMathSciNetGoogle Scholar
  43. Kadell, K. W. J. (1994a). A proof of the q-Macdonald-Morris conjecture forbc n. Mem. Amer. Math. Soc., 108(516):vi+80.MathSciNetGoogle Scholar
  44. Kadell, K. W. J. (1994b). A simple proof of an Aomoto type extension of the q-Morris theorem. Contemp. Math., 166:167–181.zbMATHMathSciNetGoogle Scholar
  45. Kadell, K. W. J. (1997). The Selberg-Jack symmetric functions. Adv. Math., 130:33–102.CrossRefzbMATHMathSciNetGoogle Scholar
  46. Kadell, K. W. J. (1998). A simple proof of an Aomoto-type extension of Gustafson's Askey-Wilson Selberg q-integral. Methods Appl. Anal., 5:125–142.zbMATHMathSciNetGoogle Scholar
  47. Kadell, K. W. J. (2000a). A Dyson constant term orthogonality relation. J. Combin Theory Ser. A, 89(2):291–297.CrossRefzbMATHMathSciNetGoogle Scholar
  48. Kadell, K. W. J. (2000b). The Schur functions for partitions with complex parts. In q-series from a contemporary perspective (South Hadley, MA, 1998), volume 254 of Contemp. Math., pages 247–270. Amer. Math. Soc., Providence, RI.Google Scholar
  49. Kadell, K. W. J. (2003). Selberg sums for the Sahi-Knop polynomials. Preprint.Google Scholar
  50. Kaneko, J. (1993). Selberg integrals and hypergeometric series associated with Jack polynomials. SIAM J. Math. Anal., 24:1086–1110.CrossRefzbMATHMathSciNetGoogle Scholar
  51. Kaneko, J. (1996). q-Selberg integrals and Macdonald polynomials. Ann. Sci. École Norm. Sup., 29(4):583–637.zbMATHMathSciNetGoogle Scholar
  52. Kaneko, J. (1998). A 1ψ1 summation theorem for Macdonald polynomials. Ramanujan J., 2:379–386.CrossRefzbMATHMathSciNetGoogle Scholar
  53. Kendall, M. G. and Stuart, A. (1973). The Advanced Theory of Statistics, volume 2. Hafner, New York.Google Scholar
  54. Knop, F. and Sahi, S. (1997). A recursion and a combinatorial formula for Jack polynomials. Invent. Math., 128:9–22.CrossRefMathSciNetzbMATHGoogle Scholar
  55. Koekoek, R. and Swarttouw, R. F. (1994). The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Faculty TWI 94-05, Delft University of Technology. Electronic version: Google Scholar
  56. Koornwinder, T. (1995). Jacobi polynomials of type bc, Jack polynomials, limit transitions and o(∞). Contemp. Math., 190:283–286.zbMATHMathSciNetGoogle Scholar
  57. Macdonald, I. G. (1982). Some conjectures for root systems and finite reflection groups. SIAM J. Math. Anal., 13:988–1007.CrossRefzbMATHMathSciNetGoogle Scholar
  58. Macdonald, I. G. (1992). Schur functions: theme and variations. In Skminaire Lotharingien de Combinatoire, (Saint-Nabor, 1992), volume 498 of Publ. Inst. Rech. Math. Av., pages 5–39. Univ. Louis Pasteur, Strasbourg.Google Scholar
  59. Macdonald, I. G. (1995). Symmetric Functions and Hall Polynomials. Oxford Univ. Press, Oxford, 2nd edition.zbMATHGoogle Scholar
  60. Macdonald, I. G. (1998). Symmetric Functions and Orthogonal Polynomials, volume 12 of Univ. Lecture Ser. Amer. Math. Soc., Providence, RI.zbMATHGoogle Scholar
  61. Mehta, M. L. (1967). Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York.zbMATHGoogle Scholar
  62. Morris, II, W. G. (1982). Constant term identities for finite and affine root systems: conjectures and theorems. PhD thesis, University of Wisconsin-Madison.Google Scholar
  63. Opdam, E. (1989). Some applications of hypergeometric shift operators. Invent. Math., 98:1–18.CrossRefzbMATHMathSciNetGoogle Scholar
  64. Opdam, E. (1995). Harmonic analysis for certain representations of graded Hecke algebras. Acta Math., 175:75–121.zbMATHMathSciNetGoogle Scholar
  65. Opdam, E. M. (1988a). Root systems and hypergeometric functions III. Compositio Math., 67:21–49.zbMATHMathSciNetGoogle Scholar
  66. Opdam, E. M. (1988b). Root systems and hypergeometric functions IV. Compositio Math., 67:191–209.zbMATHMathSciNetGoogle Scholar
  67. Proctor, R. (1989). Equivalence of the combinatorial and the classical definitions of the Schur functions. J. Combin. Theory Ser. A, 51:135–137.CrossRefzbMATHMathSciNetGoogle Scholar
  68. Rahman, M. and Suslov, S. K. (1994a). Barnes and Ramanujan-type integrals on the q-linear lattice. SIAM J. Math. Anal., 25:1002–1022.CrossRefMathSciNetzbMATHGoogle Scholar
  69. Rahman, M. and Suslov, S. K. (1994b). The Pearson equation and the beta integral. SIAM J. Math. Anal., 25:646–693.CrossRefMathSciNetzbMATHGoogle Scholar
  70. Rahman, M. and Suslov, S. K. (1996). A unified approach to the summation and integration formulas for q-hypergeometric functions, I. J. Statist. Plan. Infer., 54:101–118.CrossRefMathSciNetzbMATHGoogle Scholar
  71. Rahman, M. and Suslov, S. K. (1998a). A unified approach to the summation and integration formulas for q-hypergeometric functions, II. Methods Appl. Anal., 5(4):399–412.MathSciNetzbMATHGoogle Scholar
  72. Rahman, M. and Suslov, S. K. (1998b). A unified approach to the summation and integration formulas for q-hypergeometric functions, III. Methods Appl. Anal., 5(4):413–424.MathSciNetGoogle Scholar
  73. Richards, D. S. P. (1989). Analogs and extensions of Selberg's integral. In q-series and Partitions (Minneapolis, MN, 1988), volume 18 of IMA Vol. Math. Appl., pages 109–137. Springer, New York.Google Scholar
  74. Rogers, L. J. (1916). On two theorems of combinatory analysis and some allied identities. Proc. London Math. Soc., 16(2):315–336.Google Scholar
  75. Rogers, L. J. (1983). On a three-fold symmetry in the elements of Heine's series. Proc. London Math. Soc., 24:171–191.Google Scholar
  76. Sahi, S. (1994). The spectrum of certain invariant differential operators associated to a Hermitian symmetric space. In Brylinski, J.-L., Brylinski, R., Guillemin, V., and Kac, V., editors, Lie Theory and Geometry in Honor of Bertram Kostant, volume 123 of Progr. Math., pages 569–576. Birkhäuser, Boston, Mass.Google Scholar
  77. Sahi, S. and Knop, F. (1996). Difference equations and symmetric polynomials defined by their zeroes. Internat. Math. Res. Notices, 10:473–486.MathSciNetGoogle Scholar
  78. Sears, D. B. (1951). Transformations of basic hypergeometric functions of special type. Proc. London Math. Soc., 53(2):467–483.Google Scholar
  79. Selberg, A. (1944). Bemerkninger om et multipelt integral. Norsk Mat. Tidsskr., 26:71–78.zbMATHMathSciNetGoogle Scholar
  80. Stanley, R. P. (1989). Some combinatorial properties of Jack symmetric functions. Adv. Math., 77:76–115.CrossRefzbMATHMathSciNetGoogle Scholar
  81. Starcher, G. W. (1930). On identities arising from solutions of q-difference equations and some interpretations in number theory. Amer. J. Math., 53:801–816.MathSciNetGoogle Scholar
  82. Stembridge, J. (1988). A short proof of Macdonald's root-system conjecture for the root systems of type a. Proc. Amer. Math. Soc., 102:777–786.CrossRefzbMATHMathSciNetGoogle Scholar
  83. Suslov, S. K. (1998). Multiparameter Ramanujan-type q-beta integrals. Ramanujan J., 2:351–369.CrossRefzbMATHMathSciNetGoogle Scholar
  84. Szegö, G. (1939). Orthogonal Polynomials, volume 23 of Colloquium Publications. Amer. Math. Soc.Google Scholar
  85. Vinet, L. and Lapointe, L. (1995). A Rodriguez formula for the Jack polynomials and the Macdonald-Stanley conjecture. Internat. Math. Res. Notices, 9:419–424.MathSciNetGoogle Scholar
  86. Zeilberger, D. (1988). A unified approach to Macdonald's root-system conjectures. SIAM J. Math. Anal., 19:987–1013.CrossRefzbMATHMathSciNetGoogle Scholar
  87. Zeilberger, D. (1989/90). A Stembridge-Stanton style elementary proof of the Habsieger Kadell q-Morris identity. Discrete Math., 79:313–322.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Kevin W. J. Kadell
    • 1
  1. 1.Department of Mathematics and StatisticsArizona State UniversityTempe

Personalised recommendations