Mizan Rahman, His Mathematics and Literary Writings

  • Richard Askey
  • Mourad E.H. Ismail
  • Erik Koelink
Part of the Developments in Mathematics book series (DEVM, volume 13)


Orthogonal Polynomial Jacobi Polynomial Product Formula Basic Hypergeometric Series Classical Orthogonal Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, G. E., Askey, R. A., and Roy, R. (1999). Special Functions. Cambridge University Press, Cambridge.Google Scholar
  2. Askey, R. (1975). Orthogonal Polynomials and Special Functions. Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA.Google Scholar
  3. Askey, R. and Ismail, M. E. H. (1983). A generalization of ultraspherical polynomials. In Erdős, P., editor, Studies in Pure Mathematics, pages 55–78. Birkhäuser, Basel.Google Scholar
  4. Askey, R. A. (1970). Linearization of the product of orthogonal polynomials, pages 131–138. Princeton Univ. Press, Princeton, N. J.Google Scholar
  5. Askey, R. A. and Wilson, J. A. (1985). Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Memoirs Amer. Math. Soc., 54(319):iv+55.MathSciNetGoogle Scholar
  6. Din, A. M. (1981). A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys., 5:207–211.CrossRefzbMATHMathSciNetGoogle Scholar
  7. Feldheim, E. (1941). Contributions à la théorie des polynomes de Jacobi. Mat. Fiz. Lapok, 48:453–504.zbMATHMathSciNetGoogle Scholar
  8. Frenkel, I. B. and Turaev, V. G. (1995). Trigonometric solutions of the Yang-Baxter equation, nets, and hypergeometric functions. In Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993), volume 192 of Progress in Mathematics, pages 65–118. Birkhäuser Boston, Boston, MA.Google Scholar
  9. Frenkel, I. B. and Turaev, V. G. (1997). Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions, pages 171–204. Birkhäuser Boston, Boston, MA.Google Scholar
  10. Gasper, G. (1970a). Linearization of the product of Jacobi polynomials. I. Canad. J. Math., 22:171–175.zbMATHMathSciNetGoogle Scholar
  11. Gasper, G. (1970b). Linearization of the product of Jacobi polynomials. II. Canad. J. Math., 22:582–593.zbMATHMathSciNetGoogle Scholar
  12. Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series. Cambridge University Press, Cambridge.Google Scholar
  13. Hylleraas, E. (1962). Linearization of products of Jacobi polynomials. Math. Scand., 10:189–200.zbMATHMathSciNetGoogle Scholar
  14. Ismail, M. E. H. and Zhang, R. (1994). Diagonalization of certain integral operators. Adv. Math., 109:1–33.CrossRefMathSciNetGoogle Scholar
  15. Koelink, E. (1997). Addition formulas for q-special functions. In Ismail, M. E. H., Masson, D. R., and Rahman, M., editors, Special functions, q-series and related topics, volume 14 of Fields Institute Communications, pages 109–129. American Mathematical Society, Providence, RI.Google Scholar
  16. Wu, T.-Y. (1966). Kinetic Theory of Gases and Plasma. Addison-Wesley.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Richard Askey
    • 1
  • Mourad E.H. Ismail
    • 2
  • Erik Koelink
    • 3
  1. 1.Department of MathematicsUniversity of WisconsinMadison
  2. 2.Department of MathematicsUniversity of Central FloridaOrlando
  3. 3.Department of MathematicsTechnische Universiteit DelftDelftThe Netherlands

Personalised recommendations