Skip to main content

Genetic Analysis of Innate Immunity: Identification and Function of the TIR Adapter Proteins

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 560))

Summary

The innate immune system senses pathogens largely through signals initiated by a collection of phylogenetically related proteins known as “Toll-like receptors” (TLRs), of which ten representatives are encoded in the human genome. The sensing role of the TLRs first came to light when one member of this family, TLR4, was shown to serve the detection of endotoxin (lipopolysaccharide; LPS) in mice. This discovery was based upon positional cloning of a spontaneous mutation affecting a locus known as Lps. The recognition specificities of other TLRs have since been established by reverse genetic methods. The understanding of the biochemical circuitry that maintains the innate capacity for immune recognition and response has loomed as the next hurdle in the field. A total of five adapter proteins with cytoplasmic domain homology to the TLRs are known to exist in mammals. These proteins are not entirely promiscuous in their interaction with TLRs, but rather, show preferential association with individual family members, giving a particular character to the signals that distinct micro-organisms initiate. The adaptive immune response is dependent upon upregulation of costimulatory molecules (UCM) such as CD80 and CD86. Very recently, it has been shown that this upregulation is dependent upon an adapter encoded by a locus known as Lps2, known as Trif or Ticam-1, and upon type I interferon receptor signaling. LPS and dsRNA both signal via Trif, but dsRNA has an accessory pathway for UCM, that is independent of both Trif/Ticam-1 and the known dsRNA receptor, TLR3. Other key innate immunity genes have also been disclosed by germline mutagenesis, and are discussed in the present review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. G. Heppner and D. W. Weiss, High susceptibility of strain A mice to endotoxin and endotoxin-red blood cell mixtures, J. Bacteriol. 90:696–703 (1965).

    PubMed  CAS  Google Scholar 

  2. J. M. Chiller, B. J. Skidmore, D. C. Morrison, and W. O. Weigle, Relationship of the structure of bacterial lipopolysaccharides to its function in mitogenesis and adjuvanticity, Proc. Natl. Acad. Sci. U. S. A 70(7), 2129–2133 (1973).

    Article  PubMed  CAS  Google Scholar 

  3. B. J. Skidmore, J. M. Chiller, D. C. Morrison, and W. O. Weigle, Immunologic properties of bacterial lipopolysaccharide (LPS): correlation between the mitogenic, adjuvant, and immunogenic activities, J. Immunol. 114(2 pt 2), 770–775 (1975).

    PubMed  CAS  Google Scholar 

  4. B. J. Skidmore, D. C. Morrison, J. M. Chiller, and W. O. Weigle, Immunologic properties of bacterial lipopolysaccharide (LPS). II. The unresponsiveness of C3H/HeJ Mouse spleen cells to LPS-induced mitogenesis is dependent on the method used to extract LPS, J. Exp. Med. 142(6), 1488–1508 (1975).

    Article  PubMed  CAS  Google Scholar 

  5. B. J. Skidmore, J. M. Chiller, W. O. Weigle, R. Riblet, and J. Watson, Immunologic properties of bacterial lipopolysaccharide (LPS). III. Genetic linkage between the in vitro mitogenic and in vivo adjuvant properties of LPS, J. Exp. Med. 143(1), 143–150 (1976).

    Article  PubMed  CAS  Google Scholar 

  6. B. J. Skidmore, J. M. Chiller, and W. O. Weigle, Immunologic properties of bacterial lipopolysaccharide (LPS). IV. Cellular basis of the unresponsiveness of C3H/HeJ mouse spleen cells to LPS-induced mitogenesis, J. Immunol. 118(1), 274–281 (1977).

    PubMed  CAS  Google Scholar 

  7. J. Watson and R. Riblet, Genetic control of responses to bacterial lipopolysaccharides in mice. I. Evidence for a single gene that influences mitogenic and immunogenic respones to lipopolysaccharides, J. Exp. Med. 140(5), 1147–1161 (1974).

    Article  PubMed  CAS  Google Scholar 

  8. S. M. Michalek, R. N. Moore, J. R. McGhee, D. L. Rosenstreich, and S. E. Mergenhagen, The primary role of lymphoreticular cells in the mediation of bost responses to bacterial endotoxin, J. Infec. Dis. 141:55–63 (1980).

    CAS  Google Scholar 

  9. A. D. O’Brien, D. L. Rosenstreich, and B. A. Taylor, Control of natural resistance to Salmonella typhimurium and Leishmania donovani in mice by closely linked but distinct genetic loci, Nature 287(5781), 440–442 (1980).

    Article  PubMed  CAS  Google Scholar 

  10. A. D. O’Brien, D. L. Rosentreich, I. Scher, G. H. Campbell, R. P. MacDermott, and S. B. Formal, Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene, J. Immunol. 124:20–24 (1980).

    PubMed  CAS  Google Scholar 

  11. D. L. Rosenstreich, A. C. Weinblatt, and A. D. O’Brien, Genetic control of resistance to infection in mice, CRC Crit. Rev. Immunol. 3:263–330 (1982).

    CAS  Google Scholar 

  12. L. Hagberg, R. Hull, S. Hull, J. R. McGhee, S. M. Michalek, and C. Svanborg Eden, Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice, Infect. Immun. 46(3), 839–844 (1984).

    PubMed  CAS  Google Scholar 

  13. A. Poltorak, I. Smirnova, X. L. He, M. Y. Liu, C. Van Huffel, O. McNally, D. Birdwell, E. Alejos, M. Silva, X. Du, P. Thompson, E. K. L. Chan, J. Ledesma, B. Roe, S. Clifton, S. N. Vogel, and B. Beutler, Genetic and physical mapping of the Lps locus-identification of the toll-4 receptor as a candidate gene in the critical region, Blood Cells Molecules & Diseases 24(17), 340–355 (1998).

    Article  CAS  Google Scholar 

  14. A. Poltorak, X. He, I. Smimova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. A. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler, Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene, Science 282(5396), 2085–2088 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. B. Lemaitre, E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann, The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults, Cell 86(6), 973–983 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. S. Rutschmann, A. Kiline, and D. Ferrandon, Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila, J. Immunol. 168(4), 1542–1546 (2002).

    PubMed  CAS  Google Scholar 

  17. N. Nomura, N. Miyajima, T. Sazuka, A. Tanaka, Y. Kawarabayasi, S. Sato, T. Nagase, N. Seki, K. Ishikawa, and S. Tabata, Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1, DNA Res. 1(1), 27–35 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. T. Taguchi, J. L. Mitcham, S. K. Dower, J. E. Sims, and J. R. Testa, Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14, Genom. 32(3), 486–488 (1996).

    Article  CAS  Google Scholar 

  19. O. Takeuchi, K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira, Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components, Immunity 11(4), 443–451 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. B. N. Gantner, R. M. Simmons, S. J. Canavera, S. Akira, and D. M. Underhill, Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2, J. Exp. Med. 197(9), 1107–1117 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3, Nature 413(6857), 732–738 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. F. Hayashi, K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi, D. R. Goodlett, J. K. Eng, S. Akira, D. M. Underhill, and A. Aderem, The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5, Nature 410(6832), 1099–1103 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, and S. Akira, A Toll-like receptor recognizes bacterial DNA, Nature 408(6813), 740–745 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. H. Hemmi, T. Kaisho, O. Takeuchi, S. Sato, H. Sanjo, K. Hoshino, T. Horiuchi, H. Tomizawa, K. Takeda, and S. Akira, Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway, Nat. Immunol. 3(2), 196–200 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. K. Tabcta et al., TLR9 and TLR3 as essential components of innate immune defense against mouse cytomegalovirus, Proc. Natl.Acad.Sci U.S.A. In Press. 2004.

    Google Scholar 

  26. N. J. Gay and F. J. Keith, Drosophila Toll and IL-1 receptor, Nature 351(6325), 355–356 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. K. A. Lord, B. Hoffman-Liebermann, and D. A. Liebermann, Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6, Oncogene 5(7), 1095–1097 (1990).

    PubMed  CAS  Google Scholar 

  28. D. Hultmark, Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family, Biochem. Biophys. Res. Commun. 199(1), 144–146 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. O. Adachi, T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, K. Nakanishi, and S. Akira, Targeted disruption of the MyD88 gene results in loss of IL-1-and IL-18-mediated function, Immunity 9(1), 143–150 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. T. Kawai, O. Adachi, T. Ogawa, K. Takeda, and S. Akira, Unresponsiveness of MyD88-deficient mice to endotoxin, Immunity 11(1), 115–122 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. K. A. Fitzgerald, E. M. Palsson-McDermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M. T. Harte, D. McMurray, D. E. Smith, J. E. Sims, T. A. Bird, and L. A. O’Neill, Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction, Nature 413(6851), 78–83 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. T. Horng, G. M. Barton, and R. Medzhitov, TIRAP: an adapter molecule in the Toll signaling pathway, Nat. Immunol. 2(9), 835–841 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. H. Oshiumi, M. Matsumoto, K. Funami, T. Akazawa, and T. Seya, TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction, Nat. Immunol. 4:161–171 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. M. Yamamoto, S. Sato, H. Hemmi, H. Sanjo, S. Uematsu, T. Kaisho, K. Hoshino, O. Takeuchi, M. Kobayashi, T. Fujita, K. Takeda, and S. Akira, Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4, Nature 420(6913), 324–329 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. K. Hoebe, X. Du, J. Goode, N. Mann, and B. Beutler, Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening, J. Endotoxin Res. 9(4), 250–255 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. K. Hoebe, X. Du, P. Georgel, E. Janssen, K. Tabeta, S. O. Kim, J. Goode, P. Lin, N. Mann, S. Mudd, K. Crozat, S. Sovath, J. Han, and B. Beutler, Identifieation of Lps2 as a key transducer of MyD88-independent TIR signaling, Nature 424(6950), 743–748 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. M. Yamamoto, S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda, and S. Akira, Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling, J. Immunol. 169(12), 6668–6672 (2002).

    PubMed  CAS  Google Scholar 

  38. M. Yamamoto, S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Sanjo, O. Takeuchi, M. Sugiyama, M. Okabe, K. Takeda, and S. Akira, Role of adapter TRIF in the MyD88-independent Toll-like receptor signaling pathway, Science 301(5633), 640–643 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. M. Yamamoto, S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, O. Takeuchi, K. Takeda, and S. Akira, TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway, Nat. Immunol. 4(11), 1144–1150 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. P. A. Lewis and D. Loomis, The formation of anti-sheep hemolytic amboceptor in the normal and tuberculous guinea pig, J. Exp. Med. 40:503 (1924).

    Article  CAS  Google Scholar 

  41. R. M. Condie, S. J. Zak, and R. A. Good, Effect of Meningococcal Endotoxin on the Immune Response, Proceedings of the Society for Experimental Biology and Medicine 90(2), 355–360 (1955.

    PubMed  CAS  Google Scholar 

  42. R. Medzhitov, P. Preston-Hurlburt, and C. A. Janeway, Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity, Nature 388(6640), 394–397 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. T. Kaisho, O. Takeuchi, T. Kawai, K. Hoshino, and S. Akira, Endotoxin-induced maturation of myd88-deficient dendritic cells, J. Immunol. 166(9), 5688–5694 (2001).

    PubMed  CAS  Google Scholar 

  44. T. Kaisho and S. Akira, Dendritic-cell function in Toll-like receptor-and MyD88-knockout mice, Trends Immunol. 22(2), 78–83 (2001).

    Article  PubMed  CAS  Google Scholar 

  45. K. Hoebe, E. M. Jannsen, S. O. Kim, L. Alexopoulou, R. A. Flavell, J. Han, and B. Beutler, Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways, Nature Immunology 4(12), 1223–1229 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. Z. Jiang, M. Zamanian-Daryoush, H. Nie, A. M. Silva, B. R. Williams, and X. Li, Poly(dI.dC)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR, J. Biol. Chem. 278(19), 16713–16719 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. M. G. Brown, A. O. Dokun, J. W. Heusel, H. R. Smith, D. L. Beckman, E. A. Blattenberger, C. E. Dubbelde, L. R. Stone, A. A. Scalzo, and W. M. Yokoyama, Vital involvement of a natural killer cell activation receptor in resistance to viral infection, Science 292(5518), 934–937 (2001).

    Article  PubMed  CAS  Google Scholar 

  48. H. R. Smith, J. W. Heusel, I. K. Mchta, S. Kim, B. G. Dorner, O. V. Naidenko, K. Iizuka, H. Furukawa, D. L. Beckman, J. T. Pingel, A. A. Scalzo, D. H. Fremont, and W. M. Yokoyama, Recognition of a virus-encoded ligand by a natural killer cell activation receptor, Proc. Natl. Acad. Sci. USA 99(13), 8826–8831 (2002).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Beutler, B., Hoebe, K., Georgel, P., Tabeta, K., Du, X. (2005). Genetic Analysis of Innate Immunity: Identification and Function of the TIR Adapter Proteins. In: Gupta, S., Paul, W.E., Steinman, R. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation X. Advances in Experimental Medicine and Biology, vol 560. Springer, Boston, MA. https://doi.org/10.1007/0-387-24180-9_4

Download citation

Publish with us

Policies and ethics