Skip to main content
  • 3712 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3GPP TS 25.101, V5.2.0, Technical Specification Group Radio Access Networks; UE Radio Transmission and Reception (FDD), March 2002.

    Google Scholar 

  2. ETSI, Digital Cellular Telecommunications System (Phase 2+); Radio Transmission and reception (GSM 05.05 version 7.3.0), 1998.

    Google Scholar 

  3. TIA/EIA-98-E, Recommended Minimum Performance Standards for cdma2000 Spread Spectrum Mobile Stations, February, 2003.

    Google Scholar 

  4. IEEE STD 1528-200X, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in Human Body Due to Wireless Communications Devices: Experimental Techniques (Draft), Aug. 2001.

    Google Scholar 

  5. R. A. Birgenheier, “Overview of Code-Domain Power, Timing, and Phase Measurements,” Hewitt-Packard Journal, Feb., 1996

    Google Scholar 

  6. S. Freisleben, “Semi-Analytical Computation of Error Vector Magnitude for UMTS SAW Filters,” EPCOS AG, Surface Acoustic Wave Devices, Munich, Germany.

    Google Scholar 

  7. V. Aparin, B. Bulltler, and P. Draxler, “Cross Modulation Distortion in CDMA Receivers,” 2000 IEEE MTT-S Digest, pp. 1953–1956.

    Google Scholar 

  8. N. M. Blachman, “Detectors, Band-pass Nonlinearities and Their Optimization: Inversion of the Chebyshev Transform” IEEE Trans. Information Theory, vol. IT-17, no. 4, pp. 398–404, July 1971.

    Article  MathSciNet  Google Scholar 

  9. S. A. Maas, Nonlinear Microwave Circuits, Artech House, Norwood, MA, 1988

    Google Scholar 

  10. J. S. Kenney and A. Leke, “Power Amplifier Spectral Regrowth for Digital Cellular and PCS Applications,” Microwave Journal, pp. 74–92, Oct. 1995.

    Google Scholar 

  11. K. G. Gard, H. M. Gutierrez, and M. B. Steer, “Characterization of Spectral Regrowth in Microwave Amplifiers Based on the Nonlinear Transformation of a Complex Gaussian Process,” IEEE Trans. On MTT, vol. 47, no. 7, pp. 1059–1060, July 1999.

    Article  Google Scholar 

  12. J. C. Pedo and N. B. de Carvalho, “On the Use of Multitone Techniques for assessing RF Components’ Intermodulation Distortion,” IEEE Trans. Microwave Theory and Techniques, vol. 47, no. 12, pp. 2393–2402, Dec. 1999.

    Article  Google Scholar 

  13. N. B. de Carvalho and J. C. Pedo, “Multi-Tone Intermodulation Distortion Performance of 3rd Order Distortion Microwave Circuits,” 1999 IEEE MTT-S Digest, pp. 763–766, 1999.

    Google Scholar 

  14. O. W. Ota, “Two-tone and Nine-tone Excitatins in Future Adative Predistorted Linearized Basestation Amplifiers of Cellular Radio,” Wireless ersonal Communications, Kluware Publishers, vol. 16, no. 1, pp. 1–19, Jan. 2001.

    Article  Google Scholar 

  15. M. Heimbach, “Polarizing RF Transmitters for Multimode Operation,” Communication System Design, Oct. 2001.

    Google Scholar 

  16. M. Heimbach, “Polar Impact: The Digital Alternative for Multi-Mode Wireless Communications,” Applied Microwave and Wireless, Aug. 2001.

    Google Scholar 

  17. S. Mann, M. Beach, P. Warr, and J. McGeehan, “Increasing the Talk-Time of Mobile Radio with Effective Linear Transmitter Architectures,” Electronics and Communication Engineering Journal, Apr. 2001.

    Google Scholar 

  18. J. K. Jau and T. S. Horng, “Linear Interpolation Scheme for Compensation of Path-Delay Difference in an Envelope Elimination and Restoration Transmitter,” Proceeding of APMC2001, pp. 1072–1075.

    Google Scholar 

  19. CDMA Development Group, CDG System Performance Tests (optional), Rev. 3.0 Draft, Apr. 9, 2003.

    Google Scholar 

Associated References

  1. L. Robinson, P. Aggarwal, and R. R. Surendran, “Direct Modulation Multi-Mode Transmitter,” 2002 IEEE International Conference on 3G Mobile Communication Technologies, pp. 206–210, May 2002.

    Google Scholar 

  2. G. D. Mandyam, “Quantization Issues for the Design of 3rd-Generation CDMA Wireless Handset Transmitter,” pp. 1–7, 1999.

    Google Scholar 

  3. L. Angrisani and R. Colella, “Detection and Evaluation of I/Q Impairments in RF Digital Transmitters,” IEE Proc.-Sci. Meas. Technol., vol. 151, no. 1, pp. 39–45, Jan. 2004.

    Article  Google Scholar 

  4. P. Naraine, “Predicting the EVM Performance of WLAN Power Amplifiers with OFDM Signals,” Microwave Journal, vol. 47, no. 5, pp. 222–226, May 2004.

    Google Scholar 

  5. B. Andersen, “Crest Factor Analysis for Complex Signal Processing,” RF Design, pp. 40–54, Oct. 2001.

    Google Scholar 

  6. N. Dinur and D. Wulich, “Peak-to-Average Power Ratio in High-Order OFDM,” IEEE Trans. On Communications, vol. 49, no. 6, pp. 1063–1072, June 2001.

    Article  MATH  Google Scholar 

  7. N. Ngajikin, N. Fisal and S. K. Yusof, “Peak to Average Power Ratio in WLAN-OFDM System,” Proceedings of 4th National Conference on Telecommunication Technology, Shah Alam, Malaysia, pp. 123–126, 2003.

    Google Scholar 

  8. O. Gorbachov, Y. Cheng and J. S. W. Chen, “Noise and ACPR Correlation in CDMA Power Amplifiers,” RF Design, pp. 38–44, May 2001.

    Google Scholar 

  9. F. H. Raab, “Intermodulation Distortion in Kahn-Technique Transmitter,” IEEE Trans. On Microwave Theory and Techniques, vol. 44, no. 12, pp. 2273–2278, Dec. 1996.

    Article  Google Scholar 

  10. S. Freisleben, “Semi-Analytical Computation of Error Vector Magnitude for UMTS SAW Filters,” Tech. Note from EPCOS AG, Surface Acoustic Wave Devices, Munich, Germany.

    Google Scholar 

  11. S. J. Yi et al., “Prediction of a CDMA Output Spectrum Based on Intermodulation Products of Two-Tone Test,” IEEE Trans. On Microwave Theory and Technology, vol. 49, no. 5, May 2001.

    Google Scholar 

  12. F. M. Ghannouchi, H. Wakana, and M. Tanaka, “A New Unequal Three-Tone Signal Method for AM-AM and AM-PM Distortion Measurements Suitable for Characterization of Satellite Communication Transmitter/transponders,” IEEE Trans, on Microwave Theory and Techniques, vol. 48, no. 8, pp. 1404–1407, Aug. 2000.

    Article  Google Scholar 

  13. F. M. Ghannouchi and A. Ghazel, “AM-AM and AM-PM Distortion Characterization of Satellite Transponders/Base Station Transmitters Using Spectrum Measurements,” Proceedings of 2003 International Conference on Recent Advance in Space Technologies, pp. 141–144, Nov. 2003.

    Google Scholar 

  14. A. Laloue et al., “An Efficient Method for Nonlinear Distortion Calculation of the AM and PM Noise Spectra of FMCW Radar Transmitter,” IEEE Trans. On Microwave Theory and Techniques, vol. 51, no. 8, pp. 1966–1976, Aug. 2003.

    Article  Google Scholar 

  15. Application note, “On the Importance of Adaptive-Bias Techniques in the RF Section of CDMA Mobile Phones to Improve Standby and Talk-Time Performance,” Wireless Semiconductor Division, Agilest Technologies.

    Google Scholar 

  16. S. Mann et al., “Increasing the Talk-time of Mobile Radios with Efficient Linear Transmitter Architectures,” Electronics and Communication Engineering Journal, pp. 65–76, April 2001.

    Google Scholar 

  17. S. Mann et al., “Increasing Talk-Time with Efficient Linear PA’s,” IEE Seminar on Tetra Market and Technology Development, pp. 6/1–6/7, Feb. 2000.

    Google Scholar 

  18. F.H. Raab, P. Asbeck et al., “RF and Microwave Power Amplifier and Transmitter Technologies — Part 1,” High Frequency Electronics, pp. 23–36, May 2003.

    Google Scholar 

  19. F.H. Raab, P. Asbeck et al., “RF and Microwave Power Amplifier and Transmitter Technologies — Part 2,” High Frequency Electronics, pp. 22–36, July 2003.

    Google Scholar 

  20. F.H. Raab, P. Asbeck et al., “RF and Microwave Power Amplifier and Transmitter Technologies — Part 3,” High Frequency Electronics, pp. 34–48, Sept. 2003.

    Google Scholar 

  21. F. H. Raab, P. Asbeck, et al., “RF and Microwave Power Amplifier and Transmitter Technologies — Part 4,” High Frequency Electronics, pp. 38–49, Nov. 2003.

    Google Scholar 

  22. F.H. Raab, “High-Efficiency L-Band Kahn-Technique Transmitter,” 1998 IEEEMTT-S Digest, pp. 585–588, June 1998.

    Google Scholar 

  23. E.W. McCune Jr., “Multi-Mode and Multi-Band Polar Transmitter for GSM, NADC, and EDGE,” 2003 IEEE Wireless Communications and Networking, vol. 2, pp. 812–815, March 2003.

    Article  Google Scholar 

  24. M. Heimbach, “Polarizing RF Transmitters for Multimode Operation,” Communication Systems Design, vol.10, no. 12, Dec. 2004.

    Google Scholar 

  25. Z. Zhang and L. E. Larson, “Gain and Phase Error-Free LINC Transmitter,” IEEE Trans. On Vehicular Technology, vol. 49, no. 5, pp.1986–1994, Sept. 2000.

    Article  Google Scholar 

  26. W. B. Sander. S.V. Schell, and B. L. Sander, “Polar Modulator for Multi-Mode Cell Phones,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 439–445, Sept. 2003.

    Google Scholar 

  27. T. Sowlati et al., “Quad-Band GSM/GPRS/EDGE Polar Loop Transmitter,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2179–2189, Dec. 2004.

    Article  Google Scholar 

  28. L. Sundstrom, “Spectral Sensitivity of LINC Transmitters to Quadrature Modulator Misalignments,” IEEE Trans, on Vehicular Technology, vol. 49, no. 4, pp. 1474–1486, July 2000.

    Article  Google Scholar 

  29. S. O. Ampem-Darko and H.S. Al-Raweshidy, “A Novel Technique for Gain/Phase Error Cancellation in LINC Transmitters,” 1999 IEEE 50th Vehicular Technology Conference, vol. 4, pp. 2034–2038, Sept. 1999.

    Google Scholar 

  30. S. A. Olson and R. E. Stengel, “LINC Imbalance Correction Using Baseband Preconditioning,” 1999 IEEE Radio and Wireless Conference, pp. 179–182, Aug. 1999.

    Google Scholar 

  31. B. Shi and L. Sundstrom, “An IF CMOS Signal Component Separator Chip for LINC Transmitter,” 2001 IEEE International Conference on Custom Integrated Circuits, pp. 49–52, May 2001.

    Google Scholar 

  32. X. Zhang, L. E. Larson and P. M. Asbeck, “Calibration Scheme for LINC Transmitter,” Electronics Letters, vol. 37, no. 5, pp. 317–318, Mar. 3001.

    Article  Google Scholar 

  33. B. Shi and L. Sundstrom, “A Time-Continuous Optimization Method for Automatic Adjustment of Gain and Phase Imbalances in Feedforward and LINC Transmitters,” pp. I-45–I-48, 2003.

    Google Scholar 

  34. R. Strandberg, P. Andreani and L. Sundstrom, “Bandwidth Considerations for a CALLUM Transmitter Architecture,” 2002 IEEE International Symposium on Circuits and Systems, vol. 4, pp. IV-25–IV-28, May 2002.

    Google Scholar 

  35. M. Boloorian and J.P. McGeehan, “Automatic Removal of Cartesian Feedback Transmitter Imperfections,” IEE Proc.-Commun., vol. 144, no. 4, pp. 281–288, Aug. 1997.

    Article  Google Scholar 

  36. S.I. Mann, M.A. Beach and K.A. Morris, “Digital Baseband Cartesian Loop Transmitter,” Electronics Letters, vol. 37, no. 22, pp.1360–1361, Oct. 2001.

    Article  Google Scholar 

  37. N. Sornin et al., “A Robust Cartesian Feedback Loop for a 802.11 a/b/g CMOS Transmitter,” 2004 IEEE Radio Frequency Integrated Circuits Symposium, pp. 145–148, 2004.

    Google Scholar 

  38. M. Helaoui, et al. “Low-IF 5 GHz WLAN Linearized Transmitter Using Baseband Digital Predistorter,” Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits, and Systems, vol. l, pp. 260–263, Dec. 2003.

    Article  Google Scholar 

  39. P. B. Kenington, “Linearized Transmitters: An Enabling Technology for Software Defined Radio,” IEEE Communications Magazine, pp. 156–162, Feb. 2002.

    Google Scholar 

  40. K.C. Peng, et al., “High Performance Frequency Hopping Transmitters Using Two-Point Delta-Sigma Modulation,” 2004 IEEE MTT-S Digest, pp. 2011–2014, June 2004.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Transmitter System Analysis and Design. In: RF System Design of Transceivers for Wireless Communications. Springer, Boston, MA. https://doi.org/10.1007/0-387-24162-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-24162-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24161-6

  • Online ISBN: 978-0-387-24162-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics