Skip to main content

Transport Network Survivability

Present and Future Options

  • Chapter
Next Generation Transport Networks
  • 655 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambs et al., “Optimizing restoration capacity in the AT&T network,” Interfaces, vol. 30, no. 1, Jan./Feb. 2000, pp. 26–44.

    Article  Google Scholar 

  2. G. R. Ash, Dynamic Routing in Telecommunications Networks. McGraw-Hill, 1998.

    Google Scholar 

  3. R. Bhandari, Survivable Networks: Algorithms for Diverse Routing. Norwell, Massachusetts, USA: Kluwer Academic, 1999.

    Google Scholar 

  4. G. Birkan, J. Kennington, E. Olinick, A. Ortynski, G. Spiride, “Making a case for using integer programming to design DWDM networks,” Optical Networks Magazine, vol. 4, no. 6, Nov./Dec. 2003, pp. 107–120.

    Google Scholar 

  5. L. Bowman, M. Broersma, ZDNet News, (10 Jun. 1998) [Online], “Severed MCI cable cripples the Net,” http://zdnet.com.com/2100-11-510740.html, accessed 20 Jan. 2004.

    Google Scholar 

  6. S. Cosares, D. N. Deutsch, I. Saniee, O. J. Wasem, “SONET toolkit: A decision support system for designing robust and cost-effective fiber-optic networks,” Interfaces, vol. 25, no. 1, Jan./Feb. 1995, pp. 20–40.

    Article  Google Scholar 

  7. C. W. Chao, G. Fuoco, D. Kropfl, “FASTAR platform gives the network a competitive edge,” A T&T Technical Journal, vol. 73, no. 4, Jul./Aug. 1994, pp. 69–81.

    Google Scholar 

  8. C. W. Chao, P. M. Dollard, J. E. Weythman, L. T. Nguyen, H. Eslambolchi, “FASTAR: a robust system for fast DS-3 restoration,” Proc. IEEE Global Telecommunications Conference (GLOBECOM) '91, Phoenix, Arizona, USA, 3–5 Dec. 1991, pp. 39.1.1–39.1.5.

    Google Scholar 

  9. S. Chamberland, B. Sansó, “Heuristics for ring network design when several types of switches are available,” Proc. IEEE International Conf Communications (ICC) '97, Montreal, Canada, 1997, pp. 570–574.

    Google Scholar 

  10. M. Clouqueur, W. D. Grover, “Computational and design studies on the unavailability of mesh-restorable networks,” Proc. Second International Workshop on the Design of Reliable Communication Networks (DRCN 2000), Munich, Germany, 9–12 Apr. 2000, pp. 181–186.

    Google Scholar 

  11. M. Clouqueur, W. D. Grover, D. Leung, O. Shai, “Mining the rings: Strategies for ring-to-mesh evolution,” Proc. Third International Workshop on the Design of Reliable Communication Networks (DRCN 2001), Budapest, Hungary, 7–10 Oct. 2001, pp. 113–120.

    Google Scholar 

  12. M. Clouqueur, W. D. Grover, “Mesh-restorable networks with complete dual failure restorability and with selectively enhanced dual-failure restorability properties,” Proc. Third International Conference on Optical Networking and Communications (OptiComm 2002), Boston, Massachusetts, USA, 29 Jul.–2 Aug. 2002, pp. 1–12.

    Google Scholar 

  13. S. Cosares, I. Saniee, O. Wasem, “Network planning with the SONET toolkit,” Bellcore EXCHANGE, Sep./Oct. 1992, pp. 8–13.

    Google Scholar 

  14. B. T. Doshi, S. Dravida, P. Harshavardhana, “Overview of INDT — A new tool for next generation network design,” Proc. IEEE GLOBECOM '95, Singapore, 13–17 Nov. 1995, pp. 1942–1946.

    Google Scholar 

  15. B. T. Doshi, S. Dravida, P. Harshavardhana, P. K. Johri, R. Nagarajan, “Dual (SONET) ring interworking: High penalty cases and how to avoid them,” Proc. 15th International Teletraffic Congress (ITC 15), Washington, DC, USA, 23–27 Jun. 1997, pp. 361–370.

    Google Scholar 

  16. J. Doucette, W. D. Grover, “Influence of modularity and economy-of-scale effects on design of mesh-restorable DWDM networks,” IEEE J. Selected Areas in Communications, vol. 18, no. 10, Oct. 2000, pp. 1912–1923.

    Google Scholar 

  17. D. A. Dunn, W. D. Grover, M. H. MacGregor, “A comparison of k-shortest paths and maximum flow routing for network facility restoration,” IEEE J. Selected Areas in Communications, vol. 12, no. 1, Jan. 1994, pp. 88–99.

    Article  Google Scholar 

  18. T. Flanagan, “Fiber network survivability,” IEEE Communications Magazine, vol. 28, no. 6, Jun. 1990, pp. 46–53.

    Article  Google Scholar 

  19. C. Frye, “Self-healing systems,” Application Development Trends, 1 Sep. 2003.

    Google Scholar 

  20. N. Geary, A. Antonopoulos, E. Drakopoulos, J. O'Reilly, J. Mitchell, “A framework for optical network planning under traffic uncertainty,” Proc. Third International Workshop on the Design of Reliable Communication Networks (DRCN 2001), Budapest, Hungary, 7–10 Oct. 2001.

    Google Scholar 

  21. L. Berger, P. Ashwood-Smith (Eds.), “Generalized MPLS — signaling functional description,” draft-ietf-mpls-generalized-signaling-02.txt, Internet draft, work in progress, Mar. 2001.

    Google Scholar 

  22. W. D. Grover, M. Clouqueur, “Span-restorable mesh network design to support multiple quality of protection (QoP) service-classes,” Proc. First International Conference on Optical Communications and Networks (ICOCN2002), Singapore, 11–14 Nov. 2002, pp. 321–323.

    Google Scholar 

  23. W. D. Grover, M. Clouqueur, “Span-restorable mesh networks with multiple quality of protection (QoP) service classes,” Photonic Network Communications, vol.9, Issue 1, 2005, pp. 19–34.

    Article  Google Scholar 

  24. W. D. Grover, J. Doucette, “Advances in optical network design with p-cycles: Joint optimization and pre-selection of candidate p-cycles,” Proc. IEEE LEOS Summer Topical Meetings 2002, Mont Tremblant, Quebec, Canada, 15–17 Jul. 2002, pp. 49–50.

    Google Scholar 

  25. W. D. Grover, “Understanding p-cycles, enhanced rings, and oriented cycle covers,” Proc. First International Conference on Optical Communications and Networks (ICOCN2002), Singapore, 11–14 Nov. 2002, pp. 305–308.

    Google Scholar 

  26. W. Grover, “p-Cycles, ring-mesh hybrids and ‘ring-mining:’ Options for new and evolving optical networks,” Proc. Optical Fiber Communication Conference (OFC) 2003, Atlanta, USA, 24–27 Mar. 2003, pp. 201–203.

    Google Scholar 

  27. W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies for Optical, MPLS, SONET, and ATM Networking. Upper Saddle River, New Jersey, USA, Prentice Hall PTR, 2003.

    Google Scholar 

  28. W. D. Grover, “The protected working capacity envelope concept: An alternate paradigm for automated service provisioning,” IEEE Communications Magazine, vol. 42, no. 1, Jan. 2004, pp. 62–69.

    Article  Google Scholar 

  29. W. D. Grover, “The selfhealing network: A fast distributed restoration technique for networks using digital crossconnect machines,” Proc. IEEE GLOBECOM '87, Tokyo, Japan, Nov. 1987, pp. 1090–1095.

    Google Scholar 

  30. W. D. Grover, “Distributed restoration of the transport network,” in Telecommunications Network Management into the 21 st Century: Techniques, Standards, Technologies, and Applications, S. Aidarous, T. Plevyak (Eds.), New York City: Wiley-IEEE Press, 1995, pp. 337–417.

    Google Scholar 

  31. W. D. Grover, “Self-organizing broadband transport networks,” Proceedings of the IEEE, vol. 85, no. 10, Oct. 1997, pp. 1582–1611.

    Article  Google Scholar 

  32. W. D. Grover, “High availability path design in ring-based optical networks,” IEEE/ACM Transactions on Networking, vol. 7, no. 4, Aug. 1999, pp. 558–574.

    Article  Google Scholar 

  33. W. D. Grover, “Resource management for fault tolerant paths in SONET ring networks,” Journal of Network and Systems Management, vol. 7, no. 4, Dec. 1999, pp. 373–394.

    Article  MATH  Google Scholar 

  34. W. D. Grover, J. B. Slevinsky, M. H. MacGregor, “Optimized design of ring-based survivable networks,” Canadian Journal of Electrical and Computer Engineering, vol. 20, no. 3, Aug. 1995, pp. 138–149.

    Google Scholar 

  35. W. D. Grover, D. Stamatelakis, “Bridging the ring-mesh dichotomy with p-cycles, ” Proc. 2nd Int. Workshop on Design of Reliable Communication Networks (DRCN 2000), Munich, Germany, 9–12 Apr. 2000, pp. 92–104.

    Google Scholar 

  36. W. D. Grover, D. Stamatelakis, “Cycle-oriented distributed preconfiguration: Ring-like speed with mesh-like capacity for self-planning network restoration,” Proc. IEEE International Conference on Communications (ICC) '98, Atlanta, Georgia, USA, 7–11 Jun. 1998, pp. 537–543.

    Google Scholar 

  37. W. D. Grover, B. D. Venables, J. H. Sandham, A. F. Milne, “Performance studies of a selfhealing network protocol in Telecom Canada long haul networks,” Proc. IEEE Global Telecommunications Conference (GLOBECOM) '90, San Diego, USA, 5–7 Dec. 1990, pp. 452–458.

    Google Scholar 

  38. M. Herzberg, S. J. Bye, A. Utano, “The hop-limit approach for spare-capacity assignment in survivable networks,” IEEE/ACM Transactions on Networking, vol. 3, no. 6, Dec. 1995, pp. 775–784.

    Article  Google Scholar 

  39. R. R. Iraschko, W. D. Grover, “A highly efficient path-restoration protocol for management of optical network transport integrity,” IEEE J. Selected Areas in Communications, vol. 18, no. 5, May 2000, pp. 779–794.

    Article  Google Scholar 

  40. R. R. Iraschko, M. H. MacGregor, W. D. Grover, “Optimal capacity placement for path restoration in STM or ATM mesh-survivable networks,” IEEE Trans. Networking, v. 6, no. 3, Jun. 1998, pp. 325–336.

    Article  Google Scholar 

  41. ITU-T Recommendation G.7042/Y.1305 (2001), “Link capacity adjustment scheme for virtual concatenated signals.”

    Google Scholar 

  42. ITU-T Recommendation G.808.1 (2003), “Generic protection switching — Linear, trail, and subnetwork protection.”

    Google Scholar 

  43. ITU-T Recommendation G.707 (1996), “Synchronous digital hierarchy bit rates.”

    Google Scholar 

  44. ITU-T Recommendation G.841 (Oct. 1998), “Types and characteristics of SDH network protection architectures.”

    Google Scholar 

  45. G. V. Kaigala, W. D. Grover, “On the efficacy of GMPLS auto-reprovisioning as a mesh-network restoration mechanism,” Proc. IEEE GLOBECOM 2003, San Francisco, USA, 1–5 Dec. 2003, pp. 3797–3801.

    Google Scholar 

  46. R. Kawamura, K. Sato, I. Tokizawa, “Self-healing ATM networks based on virtual path concept,” IEEE Journal on Selected Areas in Communications, vol. 12, no. 1, Jan. 1994, pp. 120–127.

    Article  Google Scholar 

  47. S. Kini, M. Kodialam, T. V. Laksham, C. Villamizar, “Shared backup label switched path restoration,” draft-kini-restoration-shared-backup-00.txt, Internet draft, work in progress, Nov. 2000.

    Google Scholar 

  48. M. Kovacevic, A. S. Acampora, “Electronic wavelength translation in optical networks,” IEEE Journal on Lightwave Technology, vol. 4, no. 6, Jun. 1996, pp. 1161–1169.

    Article  Google Scholar 

  49. A. Kodian, W. D. Grover, J. Slevinsky, D. Moore, “Ring-mining to p-cycles as a target architecture: Riding demand growth into network efficiency,” Proc. 19th National Fiber Optic Engineers Conference (NFOEC 2003), Orlando, Florida, USA, 7–11 Sep. 2003, pp. 1543–1552.

    Google Scholar 

  50. M. Kodialam, T. V. Lakshman, “Dynamic routing of bandwidth guaranteed tunnels with restoration,” Proc. 19th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2000), Tel-Aviv, Israel, 26–30 Mar. 2000, pp. 902–911.

    Google Scholar 

  51. K. Kompella et al., “OSPF extensions in support of generalized MPLS,” draft-kompella-ospf-extensions-00.txt, Internet draft, work in progress, Jul. 2000.

    Google Scholar 

  52. K. Kompella, Y. Rekhter (Eds.), “OSPF extensions in support of generalized multi-protocol label switching,” draft-ietf-ccamp-ospf-gmpls-extensions-12.txt, Internet draft, work in progress, Oct. 2003.

    Google Scholar 

  53. K. Kompella, Y. Rekhter (Eds.), “Routing extensions in support of generalized multi-protocol label switching,” draft-ietf-ccamp-gmpls-routing-09.txt, Internet draft, work in progress, Oct. 2003.

    Google Scholar 

  54. J. Lang (Ed.), “Link management protocol (LMP),” draft-ietf-ccamp-lmp-10.txt, Internet draft, work in progress, Oct. 2003.

    Google Scholar 

  55. D. Leung, W. D. Grover, “Comparative ability of span restorable and path protected network designs to withstand uncertainty in the demand forecast,” Proc. 18 th National Fiber Optic Engineers Conference (NFOEC 2002), Dallas, Texas, USA, 15–19 Sep. 2002, pp. 1450–1461.

    Google Scholar 

  56. D. Leung, W. D. Grover, “Restorable mesh network design under demand uncertainty: Toward 'future proof' transport investments,” Proc. Optical Fiber Communications Conf (OFC) 2004, Los Angeles, Feb. 2004.

    Google Scholar 

  57. D. K. Leung, W.D. Grover, “Maximum-profit model for study of multi-QoP wavelength service offerings in survivable mesh networks,” to appear in Proc. Combined NFOEC/OFC Conferences, Anaheim, March 6–11, 2005.

    Google Scholar 

  58. G. Li, D. Wang, C. Kalmanek, R. Doverspike, “Efficient distributed path selection for shared restoration connections,” Proc. 21 st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), New York City, USA, 23–27 Jun. 2002, pp. 140–149.

    Google Scholar 

  59. G. Li, J. Yates, D. Wang, C. Kalmanek, “Control plane design for reliable optical networks,” IEEE Communications Magazine, vol. 40, no. 2, Feb. 2002, pp. 90–96.

    Article  Google Scholar 

  60. E. Mannie (Ed.), “Generalized multi-protocol label switching architecture,” draft-ietf-ccamp-gmpls-architecture-07.txt, Internet draft, work in progress, May 2003.

    Google Scholar 

  61. W. McAuliffe, ZDNet UK, (3 Aug. 2001) [Online], “Train crash could be to blame for Internet derailment,” http://news.zdnet.co.uk/business/0,39020645,2092503,00.htm, accessed 20 Jan. 2004.

    Google Scholar 

  62. G. D. Morley, W. D. Grover, “Tabu search optimization of optical ring transport networks,” Proc. IEEE Global Telecommunications Conference (GLOBECOM) 2001, San Antonio, USA, Nov. 2001, pp. 2160–2164.

    Google Scholar 

  63. D. Morley, W. Grover, “A comparative survey of methods for automated design of ring-based transport networks,” TRLabs, Edmonton, Alberta, Canada, Technical Report TR-97-04, Issue 1.0, 28 Jan. 1998, available at: http://www.ece.ualberta.ca/~grover/publications (Tech Reports).

    Google Scholar 

  64. S. Mokbel, “Canada's optical research and education network: CA*net3,” Proc. 2nd Intl. Workshop on Design of Reliable Communication Networks (DRCN2000), Munich, Germany, 9–12 Apr. 2000, pp. 10–32 J.

    Google Scholar 

  65. Nortel (Northern Telecom), (1996), “Introduction to SONET Networking”

    Google Scholar 

  66. E. Oki, N. Matsuura, K. Shiomoto, N. Yamanaka, “A disjoint path selection scheme with shared risk link groups in GMPLS networks,” IEEE Communications Letters, vol. 6, no. 9, Sep. 2002, pp. 406–408.

    Article  Google Scholar 

  67. S. Orlowski, R. Wessaly, “Comparing restoration concepts using optimal configurations with integrated hardware and routing decisions,” Proc. 4 th Intl. Workshop on the Design of Reliable Communication Networks (DRCN 2003), Banff, Alberta, Canada, 19–22 Oct. 2003, pp. 15–22.

    Google Scholar 

  68. Quebec Scientific Information Network, (29 Jan. 2003) [Online], “Forestville-Rimouski underwater cable repaired,” http://www.risq.qc.ca/nouvelles/nouvelle_item.php?LANG=EN&ART=123 1, accessed 20 Jan. 2004.

    Google Scholar 

  69. B. Rajagopalan, J. Luciani, D. O. Awduche, “IP over optical networks: A framework,” draft-ietf-ipo-framework-05.txt, Internet draft, work in progress, Sep. 2003.

    Google Scholar 

  70. IEEE 802.17-2004, “Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks, Specific requirements — Part 17: Resilient Packet Ring Access Method & Physical Layer Specifications (RPR).”

    Google Scholar 

  71. A. Sack, “The p-cycles home page,” http://tomato.edm.trlabs.ca/p-cycles/. (If this URL changes in the future, an updated link will be available at http://www.ece.ualberta.ca/~grover/)

    Google Scholar 

  72. A. Sack, W. D. Grover, “Hamiltonian p-cycles for fiber-level protection in homogeneous and semi-homogeneous optical networks,” IEEE Network, vol. 18, no. 2, Mar./Apr. 2004, pp. 49–56.

    Article  Google Scholar 

  73. D. A. Schupke, C. G. Gruber, A. Autenrieth, “Optimal configuration of p-cycles in WDM networks,” Proc. IEEE Intl. Conf on Communications (ICC) 2002, New York City, USA, 28 Apr.–2 May 2002, pp. 2761–2765.

    Google Scholar 

  74. D.A. Schupke, W.D. Grover, M. Clouqueur, “Strategies for enhanced dual failure restorability with static or reconfigurable p-cycle networks,” Proc. 2004 Intl. Conf. Communications (ICC 2004), Paris, France, June 2004.

    Google Scholar 

  75. J. Schallenburg, “Is 50 ms restoration necessary?,” slides presented at IEEE Bandwidth Management Workshop IX, Montebello, Quebec, Canada, Jun. 2001. Available: http://www.ece.ualberta.ca/~grover/WDG_50ms.htm.

    Google Scholar 

  76. D. A. Schupke, M. C. Scheffel, W. D. Grover, “Configuration of p-cycles in WDM networks with partial wavelength conversion,” Photonic Network Communications, vol. 6, no. 3, Nov. 2003, pp. 239–252.

    Article  Google Scholar 

  77. G. Shen, W. D. Grover, “Extending the p-cycle concept to path-segment protection,” Proc. IEEE International Conference on Communications (ICC) 2003, Anchorage, Alaska, USA, 11–15 May 2003, pp. 1314–1319.

    Google Scholar 

  78. G. Shen, W. D. Grover, “Extending the p-cycle concept to path segment protection for span and node failure recovery,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 8, Oct. 2003, pp. 1306–1319.

    Article  Google Scholar 

  79. G. Shen, W. D. Grover, “Design and performance of protected working capacity envelopes based on p-cycles: A fast, simple, and scalable framework for dynamic provisioning of survivable services,” Proc. Asia-Pacific Optical and Wireless Commun. Conf (APOC) 2004, Beijing, 7–11 Nov. 2004, vol. 5626.

    Google Scholar 

  80. G. Shen, W. D. Grover, “Design of protected working capacity envelopes based on p-cycles: An alternative framework for survivable automated lightpath provisioning,” to appear in Performance Evaluation and Planning Methodsfor the Next Generation Internet, A. Girard, B. Sansò, F. Vazquez-Abad (Eds.), Kluwer Academic.

    Google Scholar 

  81. A. P. Snow, M. W. Thayer, “Defeating telecommunication system fault-tolerant designs,” Proc. Third Information Survivability Workshop (ISW 2000), Boston, Massachusetts, USA, 24–26 Oct. 2000.

    Google Scholar 

  82. A. P. Snow, “Network reliability: The concurrent challenges of innovation, competition, and complexity,” IEEE Transactions on Reliability, vol. 50, no. 1, Mar. 2001, pp. 38–40.

    Article  Google Scholar 

  83. American National Standards Institute, “Synchronous optical network (SONET) — Automatic protection,” ANSI T1.105.01-2000, Mar. 2000.

    Google Scholar 

  84. American National Standards Institute, “Synchronous optical network (SONET) — Basic description including multiplex structure, rates, and formats,” ANSI Standard T1.105-2001, May 2001.

    Google Scholar 

  85. J. Sosnosky, “Service applications for SONET DCS distributed restoration,” IEEE J. Selected Areas in Commun., vol. 12, no. 1, Jan. 1994, pp. 59–68.

    Article  Google Scholar 

  86. D. Stamatelakis, W. D. Grover, “IP layer restoration and network planning based on virtual protection cycles,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, Oct. 2000, pp. 1938–1949.

    Article  Google Scholar 

  87. Telcordia GR-1400 (1999) SONET Dual-Fed Unidirectional Path Switched Ring (UPSR) Equipment Generic Criteria

    Google Scholar 

  88. I. Tham, ZDNet UK, (20 Sep. 2001) [Online], “Anchor-draggers cut Asia's Internet pipe,” http://news.zdnet.co.uk/internet/0,39020369,2095715,00.htm, accessed 20 Jan. 2004.

    Google Scholar 

  89. M. To, P. Neusy, “Unavailability analysis of long-haul networks,” IEEE J. Selected Areas in Commun., vol. 12, no. 1, Jan. 1994, pp. 100–109.

    Article  Google Scholar 

  90. G. Wearden, ZDNet UK, (26 Nov. 2003) [Online], “Cable failure hits UK Internet traffic,” http://news.zdnet.co.uk/communications/networks/0,39020345,39118125,00.htm, accessed 20 Jan. 2004.

    Google Scholar 

  91. T.-H. Wu, Fiber Network Service Survivability. Norwood, Massachusetts, USA: Artech House, 1992.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Transport Network Survivability. In: Next Generation Transport Networks. Springer, Boston, MA. https://doi.org/10.1007/0-387-24068-3_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-24068-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24067-1

  • Online ISBN: 978-0-387-24068-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics