Skip to main content

Abstract

Diffuse optical imaging is a functional medical imaging modality which takes advantage of the relatively low attenuation of near-infrared light to probe the internal optical properties of tissue. The optical properties are affected by parameters related to physiology such as the concentrations of oxy- and deoxyhemoglobin. Instrumentation that is used for optical imaging is generally able to measure changes in the attenuation of light at several wavelengths, and in the case of time- and frequency-domain instrumentation, the time-of-flight of the photons in tissue.

Light propagation in tissue is generally dominated by scattering. Models for photon transport in tissue are generally based on either stochastic approaches or approximations derived from the radiative transfer equation. If a numerical forward model which describes the physical situation with sufficient accuracy exists, inversion methods may be used to determine the internal optical properties based on boundary measurements.

Optical imaging has applications in, e.g., functional brain imaging, breast cancer detection, and muscle imaging. It has the important advantages of transportable instrumentation, relatively high tolerance for external electromagnetic interference, non-invasiveness, and applicability for neonatal studies. The methods are not yet in clinical use, and further research is needed to improve the reliability of the experimental techniques, and the accuracy of the models used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arridge, S. R., Cope, M., and Delpy, D. T., 1992, The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis, Phys. Med. Biol. 37:1531–1560.

    Article  PubMed  CAS  Google Scholar 

  • Arridge, S. R., Schweiger, M., Hiraoka, M., and Delpy, D. T., 1993, A finite element approach for modeling photon transport in tissue, Med. Phys. 20:299–309.

    Article  PubMed  CAS  Google Scholar 

  • Arridge, S. R., 1995, Photon-measurement density functions. Part 1: Analytical forms, Appl. Opt. 34:7395–7409.

    Google Scholar 

  • Arridge, S. R., and Schweiger, M., 1995, Photon-measurement density functions. Part 2: Finiteelement-method calculations, Appl. Opt. 34:8026–8037.

    Google Scholar 

  • Arridge, S. R., and Lionheart, W. R. B., 1998, Non-uniqueness in diffusion-based optical tomography, Opt. Lett. 23:882–884.

    Google Scholar 

  • Arridge, S. R., and Schweiger, M., 1998, A general framework for iterative reconstruction algorithms in optical tomography, using a finite element method, in: Computational Radiology and Imaging: Therapy and Diagnosis, Borgers, C., and Natterer, F., ed., IMA Volumes in Mathematics and its Applications.

    Google Scholar 

  • Arridge, S. R., 1999, Optical tomography in medical imaging, Inv. Prob. 15:R41–R93.

    Article  Google Scholar 

  • Barbour, R. L., Graber, H. L., Pei, Y., Zhong, S., and Schmitz, C. H., 2001, Optical tomographic imaging of dynamic features of dence-scattering media, J. Opt. Soc. Am. A 18:3018–3036.

    CAS  Google Scholar 

  • Beauvoit, B., and Chance, B., 1998, Time-resolved spectroscopy of mitochondria, cells and tissues under normal and pathological conditions, Mol. Cell. Biochem. 184:445–455.

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua, F., Piguet, D., Marquet, P., Gross, J. D., Tromberg, B. J., and Depeursinge, C., 1999, In vivo local determination of tissue optical properties: applications to human brain, Appl. Opt. 38:4939–4950.

    PubMed  CAS  Google Scholar 

  • Bluestone, A., Abdoulaev, G., Schmitz, C. H., Barbour, R. L., and Hielscher, A. H., 2001, Threedimensional optical tomography of hemodynamics in the human head, Opt. Expr. 9:272–286.

    CAS  Google Scholar 

  • Boas, D., 1996, Diffuse Photon Probes of Structural and Dynamical Properties of Turbid Media: Theory and Biomedical Applications, Ph.D. thesis, Univ. of Pennsylvania.

    Google Scholar 

  • Boas, D., O’Leary, M. A., Chance, B., Yodh, A. G., 1997, Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis, Appl. Opt. 36:75–92.

    PubMed  CAS  Google Scholar 

  • Boas, D. A., Gaudette, T., and Arridge, S. R., 2001a, Simultaneous imaging and optode calibration with diffuse optical tomography, Opt. Expr. 8:263–270.

    CAS  Google Scholar 

  • Boas, D. A., Gaudette, T., Strangman G., Cheng, X., Marota, J. J. A., and Mandeville, J. B., 2001b, The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics, Neurolmage 13:76–90.

    Article  CAS  Google Scholar 

  • Boas, G., 2002, Optical Breast Imaging: Mammography’s next step? Advance for Imaging and Radiation Therapy Professionals June 17:30–31.

    Google Scholar 

  • Bohren, C. F., and Huffman, D. R., 1983, Absorption and Scattering of Light by Small Particles, J. Wiley, New York.

    Google Scholar 

  • Bolin, F. P., Preuss, L. E., Taylor, R. C., and Ference, J., 1989, Refractive index of some mammalian tissues using a fiber optic cladding method, Appl. Opt. 28:2297–2296.

    Google Scholar 

  • Boushel, R., and Piantadosi, C. A., 2000, Near-infrared spectroscopy for monitoring muscle oxygenation, Acta Physiol. Scand. 168:615–622.

    Article  PubMed  CAS  Google Scholar 

  • Case, K. M., and Zweifel, P. F., 1967, Linear Transport Theory, Addison-Wesley.

    Google Scholar 

  • Cerussi, A. E., Jakubowski, D., Shah, N., Bevilacqua, F., Lanning, R., Berger, A. J., Hsiang D., Butler J., Holcombe R. F., and Tromberg B. J., 2002, Spectroscopy enhances the information content of optical mammography, J. Biomed. Opt. 7:60–71.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Leigh, J. S., Miyake, H., Smith, D. S., Nioka, S., Greenfeld, R., Finander, M., Kaufmann, K., Levy, W., Young, M., Cohen, P., Yoshioka, H., and Boretsky, R., 1988, Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain. Proc. Nat. Acad. Sci. USA 85:4971–4975.

    PubMed  CAS  Google Scholar 

  • Chance, B., Zhuang, Z., UnAh, C., Alter, C., and Lipton, L., 1993, Cognition-activated low-frequency modulation of light absorption in human brain, Proc. Natl. Acad. Sci. USA 90:3770–3774.

    PubMed  CAS  Google Scholar 

  • Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden, K., Li, C., Murray, T., Ovetsky, Y., Pidikiti, D., and Thomas, R., 1998a, A novel method for fast imaging of brain function, noninvasively, with light. Opt. Expr. 2:411–423.

    Article  CAS  Google Scholar 

  • Chance, B., Cope, M., Gratton, E., Ramanujam, N., and Tromberg, B., 1998b, Phase measurement of light absorption and scatter in human tissue, Rev. Sci. Instrum. 69:3457–3481.

    Article  CAS  Google Scholar 

  • Chandrasekhar, S., 1960, Radiative. Transfer, Dover Publications, Inc., New York.

    Google Scholar 

  • Chen, Y., Zhou, S., Xie, C., Nioka, S., Delivoria-Papadopoulos, M., Anday, E., and Chance, B., 2000, Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function, J. Biomed. Opt. 5:194–200.

    Article  PubMed  CAS  Google Scholar 

  • Cheong, W., Prahl, S. A., and Welch, A. J., 1990, A review of the optical properties of biological tissues, IEEE J. Quant. Elec. 26:2166–2185.

    Article  Google Scholar 

  • Colak, S. B., van der Mark, M. B., Hooft, G. W.’t, Hoogenraad, J. H., van der Linden, E. S., and Kuijpers, F. A., 1999, Clinical optical tomography and NIR spectroscopy for Breast Cancer Detection, IEEE J. Quantum Electron. 5:1143–1158.

    Article  CAS  Google Scholar 

  • Cooper, C. E., Matcher, S. J., Wyatt, J. S., Cope, M., Brown, G. C., Nemoto, E. M., and Delpy, D. T., 1994, Near infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics, Biochem. Soc. Trans. 22:974–980.

    PubMed  CAS  Google Scholar 

  • Cooper, C. E., and Springett, R., 1997, Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy, Phil. Trans. R. Soc. London Ser. B 352:669–677.

    Article  CAS  Google Scholar 

  • Cope, M., 1991, The Development of a Near Infrared Spectoscopy System and its Application for Non Invasive Monitoring of Cerebral Blood and Tissue Oxygenation in the Newborn Infant, Ph.D. thesis, University of London.

    Google Scholar 

  • Culver, J. P., Siegel, A., Franceschini, M. A., Marota, J. J., Mandeville, J. B., and Boas, D. A., 2002, OSA Biomedical Topical Meetings, OSA Technical Digest, (Optical Society of America, Washington DC), pp. 41–43.

    Google Scholar 

  • Colier, W. N., Quaresima, V., Wenzel, R., van der Sluijs, M. C., Oeseburg, B., Ferrari, M., and Villringer, A., 2001, Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm, Vision Res. 41:97–102.

    Article  PubMed  CAS  Google Scholar 

  • De Blasi, R. A., Fantini, S., Franceschini, M. A., Ferrari M., and Gratton, E., 1995, Cerebral and muscle oxygen saturation measurement by a novel frequency-domain near-infrared spectrometer, Med. & Biol. Eng. & Comput. 33:228–230.

    Google Scholar 

  • Den Outer, P. N., Nieuwenhuizen, T. M., and Lagendijk, A., 1993, Location of objects in multiple-scattering media, J. Opt. Soc. Am. A 10:1209–1218.

    Google Scholar 

  • Dehghani, H., Pogue, B. W., Poplack, S. P., and Paulsen, K. D., 2003, Multiwavelength threedimensional nearinfrared tomography of the breast: initial simulation, phantom, and clinical results, Appl. Opt. 42:135–145.

    PubMed  Google Scholar 

  • Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray, S., and Wyatt, J., 1988, Estimation of optical pathlength through tissue from direct time of flight measurement, Phys. Med. Biol. 33:1433–1442.

    Article  PubMed  CAS  Google Scholar 

  • DiCon FiberOptics, 1998, VX500 fiberoptic switch operation manual, Berkeley, USA.

    Google Scholar 

  • Dorn, O., 1998, A transport-backtransport method for optical tomography, Inv. Prob. 14:1107–1130.

    Article  Google Scholar 

  • Dorn, O., 2000, Scattering and absorption transport sensitivity functions for optical tomography, Optics Express 7:492–506.

    PubMed  CAS  Google Scholar 

  • Dorn, O., submitted, Shape reconstruction in scattering media with voids using a transport model and level sets, Canadian Applied Mathematics Quarterly

    Google Scholar 

  • Duncan, A., Meek, J. H., Clemence, M., Elwell, C. E., Tyszczuk, L., Cope, M., and Delpy, D., 1995, Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy, Phys. Med. Biol. 40:295–304.

    Article  PubMed  CAS  Google Scholar 

  • Durduran, T., Choe, R., Culver, J. P., Zubkov, L., Holboke, M. J., Chance, B., and Yodh, A. G., 2002, Bulk optical properties of healthy female breast tissue, Phys. Med. Biol. 47:2847–2861.

    Article  PubMed  CAS  Google Scholar 

  • Ebert B., Sukowski U., Grosenick D., Wabnitz H., Moesta T. K., Licha K., Becker A., Semmler W., Schlag P. M., and Rinneberg H., 2001, Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments, J. Biomed. Opt. 6:134–140.

    Article  PubMed  CAS  Google Scholar 

  • Eda, H., Oda, Ichiro, Yasunobu, I., Wada, Y., Oikawa, Y. Tsunazawa, Y., Takada, M., Tsuchiya, Y., Yamashita, Y., Oda, M., Sassaroli, A., Yamada, Y., and Tamura, M., 1999, Multichannel time-resolved optical tomographic imaging system, Rev. Sci. Instrum. 70:3595–3601.

    Article  CAS  Google Scholar 

  • Elwell, C. E., 1995, A practical users guide to near infrared spectroscopy, UCL Reprographics, Lontoo.

    Google Scholar 

  • Elwell, C. E., Owen-Reece, H., Wyatt, J. S., Cope, M., Reynolds, E. O., and Delpy, D. T., 1996, Influence of respiration and changes in expiratory pressure on cerebral haemoglobin concentration measured by near infrared spectroscopy, J. Cereb. Blood Flow Metab. 16:353–357.

    Article  PubMed  CAS  Google Scholar 

  • Fantini, S. and Franceschini, M. A., 2002, Frequency-domain techniques for tissue spectroscopy and imaging, in: Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed., SPIE Press, Belllingham, Washington, pp. 405–453.

    Google Scholar 

  • Fantini, S., Walker, S. A., Franceschini, M. A., Kaschke, M., Schlag, P. M., and Moesta, K. T., 1998, Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods, Appl. Opt. 37:1982–1989.

    PubMed  CAS  Google Scholar 

  • Feng, S., Zeng, F., and Chance, B., 1995, Photon migration in the presence of a single defect: a perturbation analysis, Appl. Opt. 34:3826–3837.

    Google Scholar 

  • Ferrari, M., Binzoni, T., and Quaresima, V., 1997, Oxidative metabolism in muscle, Phil. Trans. R. Soc. Lond. B 352:677–683.

    Article  CAS  Google Scholar 

  • Firbank, M., and Delpy, D. T., 1993, A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy, Phys. Med. Biol. 38:847–853.

    Article  Google Scholar 

  • Firbank, M., Oda, M., and Delpy, D. T., 1995, An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging, Phys. Med. Biol. 40:955–961.

    Article  PubMed  CAS  Google Scholar 

  • Firbank, M., Hiraoka, M., Essenpreis, M., and Delpy, D. T., 1997, Measurement of the optical properties of the skull in the wavelength range 650–950 nm, Phys. Med. Biol. 38,503–510.

    Google Scholar 

  • Fishkin, J. B., and Gratton, E., 1993, Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge, J. Opt. Soc. Am. A 10:127–140.

    PubMed  CAS  Google Scholar 

  • Fishkin, J. B., Coquoz, O., Anderson, E. R., Brenner, M., and Tromberg, B. J., 1997, Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject, Appl. Opt. 36:10–20.

    CAS  PubMed  Google Scholar 

  • Franceschini, M. A., Moesta, K. T., Fantini, S., Gaida, G., Gratton, E., Jess, H., Mantulin, W. W., Seeber, M., Schlag, P. M., and Kaschke, M., 1997, Frequency-domain techniques enhance optical mammography: initial clinical results, Proc. Natl. Acad. Sci. USA 94:6468–6473.

    Article  PubMed  CAS  Google Scholar 

  • Franceschini, M. A., Gratton, E., and Fantini, S., 1999, Non-invasive optical method to measure tissue and arterial saturation: an application to absolute pulse oximetry of the brain, Opt. Lett. 24:829–831.

    PubMed  CAS  Google Scholar 

  • Franceschini, M. A., Toronov, V., Filiaci, M. E., Gratton, E., and Fantini, S., 2000, On-Line Optical Imaging of the Human Brain with 160 ms Temporal Resolution, Opt. Expr. 6:49–57.

    CAS  Google Scholar 

  • Frostig, R. D., Lieke, E. E., Ts’o, D. Y., and Grinvald, A., 1990, Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. USA 87:6082–6086.

    PubMed  CAS  Google Scholar 

  • Gibbs, E. L., Lennox, W. G., Nims, L. F., and Gibbs, F. A., 1942, Arterial and cerebral venous blood, arterial-venous differences in man, J. Biol. Chem. 144:325–332.

    CAS  Google Scholar 

  • Graaff, R., Aarnoudse, J. G., de Mul, F. F. M., and Jentink, H. W., 1989, Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation, Appl. Opt. 28:2273–2279.

    Google Scholar 

  • Gratton, G., and Fabiani, M., 2001, The event-related optical signal: a new tool for studying brain function, Int. J. of Psychophys. 42:109–121.

    Article  CAS  Google Scholar 

  • Groenhuis, R. A. J., Ferwerda, H. A., and Ten Bosch, J. J., 1983a, Scattering and absorption of turbid materials determined from reflection measurements 1: theory, Appl. Opt. 22:2456–2462.

    PubMed  CAS  Google Scholar 

  • Groenhuis, R. A. J., Ten Bosch, J. J., and Ferwerda, H. A., 1983b, Scattering and absorption of turbid materials determined from reflection measurements 2: measuring method and calibration, Appl. Opt. 22:2463–2467.

    PubMed  CAS  Google Scholar 

  • Grosenick, D., Wabnitz, H., Rinneberg, H., Moesta, K. T., and Schlag, P., 1999, Development of a time-domain optical mammograph and first in vivo applications, Appl. Opt. 38:2927–2943.

    PubMed  CAS  Google Scholar 

  • Grosenick, D., Wabnitz, H., Macdonald, R., Rinneberg, H., Mucke, J., Stroszczynski, C., Moesta, K. T., and Schlag, P., 2002, Determination of in vivo optical properties of breast tissue and tumors using a laser pulse mammography, in: OSA Biomedical Topical Meetings, OSA Technical Digest, Optical Society of America, Miami Beach, Florida, pp. 459–461.

    Google Scholar 

  • Haskell, R. C., Svaasand, L. O., Tsay, T-T., Feng, T-C., McAdams, M. S., and Tromberg, B. J., 1994, Boundary conditions for the diffusion equation in radiative transfer, J. Opt. Soc. Am. A 11:2727–2741.

    Article  CAS  Google Scholar 

  • Hargrave, P., Nicholson, P. W., Delpy, D. T., and Firbank, M., 1996, Optical properties of multicellular tumor spheroids, Phys. Med. Biol. 41:1067–1072.

    Article  PubMed  CAS  Google Scholar 

  • Hawrysz, D. J., and Sevick-Muraca, E. M., 2000, Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents, Neoplasia 2:388–417.

    Article  PubMed  CAS  Google Scholar 

  • Hebden, J. C., Gibson, A., Yusof, R. M., Everdell, N., Hillman, E. M. C., Delpy, D. T., Arridge, S. R., Austin, T., Meek, J. H., and Wyatt, J. S., 2002a, Three-dimensional optical tomography of the premature infant brain, Phys. Med. Biol. 47:4155–4166.

    Article  PubMed  Google Scholar 

  • Hebden, J. C., Gonzalez, F. M., Gibson, A., Hillman, E. M. C., Yusof, R., Everdell, N., Delpy, D. T., Zaccanti, G., and Martelli, F., 2002b, Assessment of an in situ temporal calibration method for time-resolved optical tomography, J. Biomed. Opt. (In press).

    Google Scholar 

  • Heino, J. and Somersalo, E., 2002, Estimation of optical absorption in anisotropic background, Inv Prob. 18:559–573.

    Article  Google Scholar 

  • Hielscher, A. H., Alcouffe, R. E., Barbour, R. L., 1997, Transport and diffusion calculations on MRI generated data, in: Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies, B. Chance, and R.R. Alfano, ed., Proc. SPIE 2979, pp. 500–508.

    Google Scholar 

  • Hielscher, A. H., Klose, A. D., and Hanson, K. M., 1999, Gradient-based iterative image reconstruction scheme for time-resolved optical tomography, IEEE Transactions on Medical Imaging 18:262–271.

    Article  PubMed  CAS  Google Scholar 

  • Hill, D. K., and Keynes, R. D., 1949, Opacity changes in stimulated nerve, J. Physiol. 108:278–281.

    Google Scholar 

  • Hillman, E. M. C., Hebden, J. C., Schmidt, F. E. W., Arridge, S. R., Schweiger, M., Dehghani, H., and Delpy, D. T., 2000, Calibration techniques and datatype extraction for time-resolved optical tomography, Rev. Sci. Instrum. 71:3415–3427.

    Article  CAS  Google Scholar 

  • Hillman, E. M. C., Hebden, J. C., Schweiger, M., Dehghani, H., Schmidt, F. E. W., Delpy, D. T., and Arridge, S. R., 2001, Time resolved optical tomography of the human forearm, Phys. Med. Biol. 46: 1117–1130.

    Article  PubMed  CAS  Google Scholar 

  • Hillman, E. M. C., 2002, Experimental and Theoretical Investigations of Near Infrared Tomographic Imaging Methods and Clinical Applications, Ph.D. thesis, University of London.

    Google Scholar 

  • Hintz, S. R., Benaron, D. A., Siegel, A. M., Zourabian, A., Stevenson, D. K., and Boas, D. A., 2001, Bedside functional imaging of the premature infant brain during passive motor activation, J. Perinat. Med. 29:335–343.

    Article  PubMed  CAS  Google Scholar 

  • Holboke, M. J., Tromberg, B. J., Li, X., Shah, N., Fishkin, J., Kidney, D., Butler, J., Chance, B., and Yodh, A. G., 2000, Three-dimensional diffuse optical mammography with ultrasound localization in a human subject, J. Biomed. Opt. 5:237–247.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi, Y. and Tamura, M., 1993, Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man, Newrosci. Lett. 150:5–8.

    Article  CAS  Google Scholar 

  • Ishimaru, A., 1978, Wave Propagation and Scattering in Random Media, Vol. 1, Single Scattering and Transport Theory, Academic Press.

    Google Scholar 

  • Israel, H., Obrig, H., Kohl, M., Uludag, K., MĂĽller, B., Wenzel, R., Buckow, C., Arnold, G., Villringer, A., 2001, Is neurovascular coupling altered in interictal migraineurs? A combined visually evoked potential (VEP) and near infrared spectroscopy (NIRS) approach, Neurolmage 13:S800.

    Article  Google Scholar 

  • Iwata N. K., Ugawa, Y., Watanabe, E., Yamashita, Y., Koizumi, H., and Kanazawa, I., 2000, Interhemispheric connection between bilateral hand motor areas studied with near-infrared spectroscipic (NIRS) mapping and transcramal magnetic stimulation (TMS), Neurolmage 11:S520.

    Article  Google Scholar 

  • Jiang, H., 1999, Optical image reconstruction based on the third-order diffusion equations, Optics Express 4:241–246.

    PubMed  CAS  Google Scholar 

  • Jiang, H., Xu, Y., Iftimia, N., Eggert, J., Klove, K., Baron, L., and Fajardo, L., 2001, Three-dimensional optical tomographic imaging of breast in a human subject, IEEE Trans. Med. Imaging 20:1334–1340.

    Article  PubMed  CAS  Google Scholar 

  • JöUbsis, F. F., 1977, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science 198:1264–1267.

    Google Scholar 

  • Kaipio, J. P., Kolehmainen, V., Somersalo, E., and Vauhkonen, M., 2000, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography, Inv. Prob. 16:1487–1522.

    Article  Google Scholar 

  • Kennan, R. P., Horovitz, S. G., Maki, A., Yamashita, Y., Koizumi, H., Gore, J. C., 2002, Simultaneous Recording of Event-Related Auditory Oddball Response Using Transcranial Near Infrared Optical Topography and Surface EEG. Neurolmage 16:587–592.

    Article  Google Scholar 

  • Kim. A. D. and Ishimaru, A., 1998 Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer, Appl. Opt. 37:5313–5319.

    CAS  PubMed  Google Scholar 

  • Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K. D., Dirnagl, U., Villringer, A., Frahm, J., 1996, Simultaneous recording of cerebral oxygenation changes during human brain activation by magnetic resoncance imaging and near-infrared spectroscopy, J. Cereb. Blood Flow Metab. 16:817–827.

    Article  PubMed  CAS  Google Scholar 

  • Klose, A. D., Netz, U., Beuthan, J., and Hielscher, A. H., 2002, Optical tomography using the time-independent equation of radiative transfer-Part 1: forward model, Journal of Quantitative Spectroscopy & Radiative Transfer 72:691–713.

    Article  CAS  Google Scholar 

  • Klose, A. D. and Hielscher, A. H., 2002, Optical tomography using the time-independent equation of radiative transfer-Part 2: inverse model, Journal of Quantitative Spectroscopy & Radiative Transfer 72:715–732.

    Article  CAS  Google Scholar 

  • Kohl-Bareis, M., Buckow, C., Zank, H., Obrig, H., Steinbrink, J., and Villringer, A., 2002, Multi channel NIR topography for the assessment of cortical activation, OSA Biomedical Topical Meetings, OSA Technical Digest, (Optical Society of America, Washington DC), pp. 300–303.

    Google Scholar 

  • Kolehmainen, V., 2001, Novel Approaches to Image Reconstruction in Diffusion Tomography, PhD thesis, University of Kuopio.

    Google Scholar 

  • Kusaka, T., Isobe, K., Nagano, K., Okubo, K., Yasuda, S., Kondo, M., Itoh, S., and Onishi, S., 2001, Neurolmage 13:944–952.

    Article  CAS  Google Scholar 

  • Laufer, J., Simpson, C. R., Kohl, M., Essenpreis, M., and Cope, M., 1998, Effect of temperature on the optical properties of ex-vivo human dermis, Phys. Med. Biol. 43:2479–2490.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, A. T., Hebden, J. C., Goldstone, J. C., and Cope, M., 1999a, Determination of the transport scatter coefficient of red blood cells, Proc. SPIE 3597:175–182.

    Article  Google Scholar 

  • Lovell, A. T., Owen-Reece, H., Elwell, C. E., Smith, M., and Goldstone J. C., 1999b, Continuous measurement of cerebral oxygenation by near infrared spectroscopy during induction of anesthesia, Anaesthesiology and Analgesia 88, 554–558.

    Article  CAS  Google Scholar 

  • Mackert, B. M., WĂĽbbeler, G., Leistner, S., Burghoff, M., Uludag, K., Obrig, H., Kohl, M., and Villringer, A., 2002, Proceedings of the 13th International Conference on Biomagnetism, August 10–14, Jena, Germany, p. 850.

    Google Scholar 

  • MacVicar, B. A. and Hochman, D., 1991, Imaging of synaptically evoked intrinsic optical signals in hippocampal slices, J. Neurosci. 11:1458–1469.

    PubMed  CAS  Google Scholar 

  • Maris, M., Gratton, E., Maier, J., Mantulin W., and Chance, B., 1994, Functional near-infrared imaging of deoxygeneted haemoglobin during exercise of the finger extensor muscles using the frequency-domain technique, Bioimaging 2:174–183.

    Article  Google Scholar 

  • Markel, V. A. and Schotland, J. C., 2001, Inverse problem in optical diffusion tomography. I. Fourier-Laplace inversion formulas, J. Opt. Soc. Am. A 18:1336–1347.

    CAS  Google Scholar 

  • Marquez, G., Wang, L. V., Lin, S. P., Schwartz, J. A., and Thomsen, S. L., 1998, Anisotropy in the absorption and scattering spectra of chicken breast, Appl. Opt. 37:798–805.

    PubMed  CAS  Google Scholar 

  • Matcher, S. J., Cope, M., and Delpy, D. T., 1994, Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy, Phys. Med. Biol. 39:177–196.

    Article  PubMed  CAS  Google Scholar 

  • Matcher, S. J., 1999, Nonuniqueness in optical tomography: relevance of the P1 approximation, Opt. Lett. 24:1729–1731.

    PubMed  CAS  Google Scholar 

  • Matson, C. L. and Liu, H., 1999, Backpropagation in turbid media, J. Opt. Soc. Am. A 16:1254–1265.

    Google Scholar 

  • McBride, T. O., Pogue, B.W., Jiang, S., Ă–sterberg, U. L., and Paulsen, K. D., 2001, A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo, Rev. Sci. Instrum. 72:1817–1824.

    Article  CAS  Google Scholar 

  • Moesta, K. T., 2002, Clinical evaluation of optical breast imaging: what requirements of the clinician can be fulfilled, in: OSA Biomedical Topical Meetings, OSA Technical Digest, Optical Society of America, Miami Beach, Florida, pp. 432–434.

    Google Scholar 

  • Mourant, J. R., Freyer, J. P., Hielscher, A. H., Eick, A. A., Shen, D., and Jonhson, T. M., 1998, Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics, Appl. Opt. 37:3586–3593.

    PubMed  CAS  Google Scholar 

  • Nioka, S., Miura, H., Long, H., Perry, A., Moser, D., and Chance, B., 1999, Functional muscle imaging in elite and untrained subjects, Proc. SPIE 3597:282–290.

    Article  Google Scholar 

  • Niwayama, M., Yamamoto, K., Kohota, D., Hirai, K., Kudo, N., Hamaoka, T., Kime, R., and Katsumura, T., 2002, A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy, IEICE Trans. Inf. & Syst. 85-D:115–123.

    Google Scholar 

  • Nissilä, I., Kotilahti, K., Fallström, K., and Katila, T., 2002a, Instrumentation for the accurate measurement of phase and amplitude in optical tomography, Rev. Sci. Instrum. 73:3306–3312.

    Article  CAS  Google Scholar 

  • Nissilä, I., Kotilahti, K., Komssi, S., Kähkönen, S., Noponen, T., Ilmoniemi, R.J., and Katila, T., 2002b, Optical measurement of hemodynamic changes in the contralateral motor cortex induced by transcranial magnetic stimulation, Proceedings of the 13th International Conference on Biomagnetism, August 10–14, Jena, Germany, pp. 851–854.

    Google Scholar 

  • Ntziachristos, V., Ma, X., and Chance, B., 1998, Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography, Rev. Sci. Instrum. 69:4221–4233.

    Article  CAS  Google Scholar 

  • Ntziachristos, V., Chance, B., and Yodh, A. G., 1999, Differential diffuse optical tomography, Optics Express 5:230–242.

    PubMed  CAS  Google Scholar 

  • Ntziachristos, V., Yodh, A. G., Schnall, M., and Chance, B., 2000, Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement, Proc. Nat. Acad. Sci. USA 97:2767–2772.

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos, V., Yodh, A. G., Schnall, M. D., and Chance, B., 2002, MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions, Neoplasia 4:347–354.

    Article  PubMed  Google Scholar 

  • Obrig, H. and Villringer, A., 1997, Near-infrared spectroscopy in functional activation studies: can NIRS demonstrate cortical activation? Adv. Exp. Med. Biol. 413:113–127.

    PubMed  CAS  Google Scholar 

  • Obrig, H., Neufang, M., Wenzel, R., Kohl, M., Steinbrink, J., Einhäupl, K. M., and Villringer, A., 2000, Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults, Neurolmage 12:623–639.

    Article  CAS  Google Scholar 

  • Obrig, H., Israel, H., Kohl-Bareis, M., Uludag, K., Wenzel, R., Muller, B., Arnold, G., and Villringer A., 2002, Habituation of the visually evoked potential and its vascular response: Implications for neurovascular coupling in the healthy adult, NeuroImage 17:1–18.

    Article  PubMed  Google Scholar 

  • Okada, E., Firbank, M., Schweiger, M., Arridge, S. R., Cope, M., and Delpy, D. T., 1997, Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head, Appl. Opt. 36:21–31.

    Article  PubMed  CAS  Google Scholar 

  • Okada, E., Schweiger, M., Arridge, S. R., Firbank, M., and Delpy, D. T., 1996, Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogencous tissue, Appl. Opt. 35:3362–3371.

    Article  Google Scholar 

  • O’Leary, M. A., Boas, D. A., Chance, B., and Yodh, A. G., 1995, Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography, Opt. Lett. 20:426–428.

    Article  Google Scholar 

  • O’Leary, M. A., Boas, D. A., Chance, B., and Yodh, A. G., 1992, Refraction of diffuse photon density waves, Phys. Rev. Lett. 69:2658–2661.

    Article  PubMed  Google Scholar 

  • Oliviero, A., Di Lazzaro, V., Piazza, O., Profice, P., Pennisi, M. A., Della Corte, F., Tonali, P., 1999, Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation, J. Neurol. 246:1164–1168.

    Article  PubMed  CAS  Google Scholar 

  • Ostermeyer, M. R. and Jacques, S. L., 1997, Perturbation theory for diffuse light transport in complex biological tissues, J. Opt. Soc. Am. A 14:255–261.

    CAS  Google Scholar 

  • Pickering, J. W., Prahl, S. A., van Wieringen, N., Beek, J. F., Sterenborg, H. J. C. M. and van Gemert, M. J. C., 1993, Double-integrating-sphere system for measuring the optical properties of tissue, Appl. Opt. 32: 399.

    Google Scholar 

  • Poe, G. R., Nitz, D. A., Rector, D. M., Kristensen, M. P., and Harper, R. M., 1996, Concurrent reflectance imaging and microdialysis in the freely behaving cat, J. Neurosci. Methods 65:143–149.

    Article  PubMed  CAS  Google Scholar 

  • Pham, T. H., Coquoz, O., Fishkin, J. B., Anderson, E., and Tromberg, B. J., 2000, Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy, Rev. Sci. Instrum. 71:2500–2513.

    Article  CAS  Google Scholar 

  • Pogue, B. W., Patterson, M. S., Jiang, H., and Paulsen, K. D., 1995, Initial assessment of a simple system for frequency domain diffuse optical tomography, Phys. Med. Biol. 40:1709–1729.

    Article  PubMed  CAS  Google Scholar 

  • Pogue, B. W., Testorf, M., McBride, T., Osterberg, U., and Paulsen, K. D., 1997, Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection, Opt. Expr. 1:391–403.

    CAS  Google Scholar 

  • Pogue, B. W., Poplack, S., Mcbride, T., Wells, W., Osterman, K., Osterberg, U. L., and Paulsen, K. D., 2001, Quantitative hemoglobin tomography with diffuse near-infrared light: pilot results in the breast, Radiology 218:261–266.

    PubMed  CAS  Google Scholar 

  • Prahl, S. A., Keijzer, M., Jacues, S. L., and Welch, A. J., 1989, A Monte Carlo Model of Light Propagation in Tissue, SPIE Institute series 5:102–111.

    Google Scholar 

  • Prahl, S. A., van Gemert, M. J. C., and Welch, A. J., 1993, Determining the optical properties of turbid media by using the adding-doubling method, Appl. Opt. 32:559–568.

    Google Scholar 

  • Quaresima, V., Matcher, S. J., and Ferrari, M., 1998, Identification and Quantification of Intrinsic Optical Contrast for Near-Infrared Mammography, Photochem. Photobiol. 67:4–14.

    Article  PubMed  CAS  Google Scholar 

  • Quaresima, V., Colier, W. N. J. M., van der Sluijs, M., and Ferrari, M., 2001, Nonuniform quadriceps O2 consumption revealed by near infrared multipoint measurements, Biochem. & Biophys. Res. Comm. 285:1034–1039.

    Article  CAS  Google Scholar 

  • Rector, D. M., Rogers, R. F., Schwaber, J. S., Harper, R. M., and George, J. S., 2001, Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation, NeuroImage 14:977–994.

    Article  PubMed  CAS  Google Scholar 

  • Rinzema, K., Murrer, L. P. H., and Star, W. M., 1998, Direct experimental verification of light transport theory in an optical phantom, J. Opt. Soc. Am. A 15:2078–2088.

    CAS  Google Scholar 

  • Sako, T., Hamaoka, T., Higuchi, H., Kurosawa, Y., and Katsumura, T., 2001, Validity of NIR spectroscopy for quantitatively measuring muscle oxidative metabolic rate in exercise, J. Appl. Physiol. 90:338–344.

    PubMed  CAS  Google Scholar 

  • Sato, H., Takeuchi, T., and Sakai, K. L., 1999, Temporal cortex activation during speech recognition: an optical topography study, Cognition 73:B55–66.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, F. E.W., Fry, M. E., Hillman, E. M. C., Hebden, J. C., and Delpy, D. T., 2000, A 32-channel time-resolved instrument for medical optical tomography, Rev. Sci. Instrum. 71:256–265.

    Article  CAS  Google Scholar 

  • Schmitz, C. H., Graber, H. L., Luo, H., Arif, I., Hira, J., Pei, Y., Bluestone, A., Zhong, S., Andronica, R., Soller, I., Ramirez, N., Barbour, S.-L.S., and Barbour, R. L., 2000, Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography, Appl. Opt. 39: 6466–6486.

    PubMed  CAS  Google Scholar 

  • Schmitz, C. H., Löcker, M., Lasker, J. M., Hielscher, A. H., and Barbour, R. L., 2002, Instrumentation for fast functional optical tomography, Rev. Sci. Instrum. 73:429–439.

    Article  CAS  Google Scholar 

  • Schotland, J. C., Haselgrove, J. C., and Leigh, J. S., 1993, Photon hitting density, Appl. Opt. 32:448–453.

    Article  Google Scholar 

  • Schweiger, M., Arridge, S. R., Hiraoka, M., and Delpy, D. T., 1995, The finite element method for the propagation of light in scattering media: Boundary and source conditions, Med. Phys. 22:1779–1792.

    Article  PubMed  CAS  Google Scholar 

  • Schweiger, M. and Arridge, S. R., 1997, Optimal data types in optical tomography, Information Processing in Medical Imaging (IPMI’97 Proceedings) (Lecture notes in Computer Science 1230), pp. 71–84.

    Google Scholar 

  • Schweiger, M. and Arridge, S. R., 1999a, Application of temporal filters to time resolved data in optical tomography, Phys. Med. Biol. 44:1699–1717.

    Article  PubMed  CAS  Google Scholar 

  • Schweiger, M. and Arridge, S. R., 1999b, Optical tomographic reconstruction in a complex head model using a priori region boundary information, Phys. Med. Biol. 44:2703–2722.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, C. R., Kohl, M., Essenpreis, M., and Cope, M., 1998, Near infrared optical properties of exvivo human skin and sub-cutaneous tissues measured using the Monte Carlo inversion technique, Phys. Med. Biol. 43:2465–2478.

    Article  PubMed  CAS  Google Scholar 

  • Steinbrink, J., Kohl, M., Obrig, H., Curio, G., Syre, F., Thomas, F., Wabnitz, H., Rinneberg, H., Villringer, A., 2000, Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head, Neurosci. Lett. 291:105–108.

    Article  PubMed  CAS  Google Scholar 

  • Steinbrink, J., Wabnitz, H., Obrig, H., Villringer, A., Rinneberg, H., 2001, Determining changes in NIR absorption using a layered model of the human head, Phys. Med. Biol. 46:879–96.

    Article  PubMed  CAS  Google Scholar 

  • Stepnoski, R. A., LaPorta, A., Raccuia-Behling, F., Blonder, G. E., Slusher, R. E., and Kleinfeld, D., 1991, Noninvasive detection of changes in membrane potential in cultured neurons by light scattering, Proc. Natl. Acad. Sci. USA 88:9382–9386.

    PubMed  CAS  Google Scholar 

  • Toronov, V., Webb, A., Choi, J. H., Wolf, M., Safonova, L., Wolf, U., and Gratton, E., 2001, Opt. Expr. 9:417–427.

    CAS  Google Scholar 

  • Tromberg, B. J., Coquoz, O., Fishkin, J. B., Pham, T., Anderson, E., Butler, J., Cahn, M., Gross, J. D., Venugopalan, V., and Pham, D., 1997, Non-invasive measurements of breast tissue optical properties using frequency domain photon migration, Phil. Trans. R. Soc. London Ser. B 352:661–668.

    Article  CAS  Google Scholar 

  • Tromberg, B. J., Shah, N., Lanning, R., Cerussi, A., Espinoza, J., Pham, T., Svaasand, L., Butler, J., 2000, Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy, Neoplasia 2:1–15.

    Article  Google Scholar 

  • Troy, T. L., Page, D. L., and Sevick-Muraca, E. M., 1996, Optical properties of normal and diseased breast tissues: prognosis for optical mammography, J. Biomed. Opt. 1:342–355.

    Article  Google Scholar 

  • Tuchin, V. V., 2000, Light scattering methods and instruments for medical diagnosis, Tutorial texts series TT38, SPIE, Bellingham, Washington.

    Google Scholar 

  • University College London, 2002, Biomedical Optics Research Group. Muscle Imaging (London, December, 2002); http://www.medphys.ucl.ac.uk/research/borg/research/monstir/muscle.htm.

    Google Scholar 

  • Vaithianathan, T., Tullis, I., Meek, J., Austin, T., Delpy, D., 2002, A portable near infrared spectroscopy system for mapping functional activation on infants, 8th International Conference on Functional Mapping of the Human Brain.

    Google Scholar 

  • Van Beekvelt, M. C. P., Borghuis, M. S., van Engelen, B. G. M., Wevers R. A., and Colier W. N. J. M., 2001, Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle, Clin. Sci. 101:21–28.

    Article  PubMed  Google Scholar 

  • Van der Zee, P., 1992, Measurement and modeling of the optical properties of biological tissues in the near infrared, Ph.D., University of London.

    Google Scholar 

  • Van der Zee, P., Essenpreis, M., and Delpy, D. T., 1993, Optical properties of brain tissue, Proc. SPIE 1888:454–465.

    Article  Google Scholar 

  • Villringer, A. and Dirnagl, U., 1995, Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging, Cerebrovasc. Brain Metab. Rev. 7:240–276.

    PubMed  CAS  Google Scholar 

  • Villringer, A., 1997, Functional neuroimaging: optical approach, Adv. Exp. Med. Biol. 413:1–18.

    PubMed  CAS  Google Scholar 

  • Villringer, A. and Chance, B., 1997, Non-invasive optical spectroscopy and imaging of human brain function, Trends Neurosci. 20:435–442.

    Article  PubMed  CAS  Google Scholar 

  • Walker, S. C., Fentini, S., and Gratton, E., 1997, Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media, Appl. Opt. 36:170–179.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L. and Jacques, S. L., 1993, Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media, J. Opt. Soc. Am. A 10:1746–1752.

    CAS  Google Scholar 

  • Wilson, B. C. and Adam, G., 1983, A Monte Carlo model for the absorption and flux distributions of light in tissue, Med. Phys. 10:824–830.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B. C., Patterson, M. S., and Flock, S. T., 1987, Indirect versus direct technologies for the measurment of the optical properties of tissues, Photochem. Photobiol. 36:601–608.

    Google Scholar 

  • Woodard, H. Q., and White, D. R., 1986, The composition of body tissues, Br. J. Radiol. 59:1209–1219.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q., Ma, H., Nioka, S., and Chance, B., 2000, Study of near infrared technology for intracranial hematoma detection, J. Biomed. Opt. 5:206–213.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Nissilä, I., Noponen, T., Heino, J., Kajava, T., Katila, T. (2005). Diffuse Optical Imaging. In: Lin, J.C. (eds) Advances in Electromagnetic Fields in Living Systems. Advances in Electromagnetic Fields in Living Systems, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-24024-1_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-24024-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23997-2

  • Online ISBN: 978-0-387-24024-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics