Skip to main content

Part of the book series: Advances in Electromagnetic Fields in Living Systems ((AEFL,volume 4))

Abstract

Microwave thermoelastic imaging uses microwave-pulse-induced thermoelastic pressure waves to form planar or tomographic images. Since the generation and detection of thermoelastic pressure waves depends on dielectric permittivity, specific heat, thermal expansion, and acoustic properties of tissue, microwave thermoelastic imaging possesses the characteristic features of a duel-modality imaging system. The unique attributes of the high contrast offered by microwave absorption and the fine spatial resolution furnished by ultrasound, are being explored to provide an imaging modality for noninvasive imaging characterization of tissues, especially for early detection of breast cancer. This chapter describes the research being conducted in developing microwave thermoelastic tomography (MTT) and imaging for medical diagnosis. It discusses the science of thermoelastic wave generation and propagation in biological tissues; the design of prototype microwave thermoelastic tomographic imaging (MTTI) systems; and the reconstruction of tomographic images using filtered-back projection algorithms; as well as the performance of prototype microwave thermoelastic tomographic systems in phantom models and human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Campbell, A.M., Land, D.V., 1992, Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz. Phys. Med. Biol. 37:193–210.

    Article  PubMed  CAS  Google Scholar 

  • Chan, K.H., 1988, Microwave-induced thermoelastic tissue imaging. PhD dissertation, University of Illinois, Chicago, 1988.

    Google Scholar 

  • Chan, K.H. and Lin, J.C., 1988 Microwave induced thermoelastic tissue imaging. Proc. IEEE/EMBS Annual International Conference, New Orleans, 1988, pp. 445–446.

    Google Scholar 

  • Chaudhary, S.S., Mishra, R.K., Swarup, A., and Thomas, J.M., 1984, Dielectric Properties of normal & malignant human breast tissues at radiowave & microwave frequencies. Indian Journal of Biochemistry & Biophysics, 21:76–79.

    CAS  Google Scholar 

  • Chou, C.K. and Galambos, R., 1979, Middle ear structure contribute little to auditory perception of microwaves. J. Microwave Power 14:321–326.

    CAS  Google Scholar 

  • Chou, C.K., Guy, A.W., and Galambos, R., 1976, Microwave induced cochlear microphonics in cats. J. Microwave Power 11:171–173.

    CAS  Google Scholar 

  • Chou, C.K., Guy, A.W., Galambos, R., and Lovely, R., 1975, Cochlear microphonics generated by microwave pulses. J. Microwave Power 10:361–367.

    CAS  Google Scholar 

  • Caspers, P. and Conway, J., 1982, Measurement of power density in a lossy material by means of electromagnetically induced acoustic signals for noninvasive determination of spatial thermal absorption in connection with pulsed hyperthermia. Proc. 12th European Microwave Conf., Helsinki, Finland, pp. 565–568.

    Google Scholar 

  • England, T.S., 1950, Dielectric properties of the human body for wave-lengths in the 1–10 cm range. Nature, 166:480–481.

    PubMed  CAS  Google Scholar 

  • England, T.S. and Sharples, N.A., 1949, Dielectric properties of the human body in the microwave region of the spectrum. Nature, 163:487–488.

    PubMed  CAS  Google Scholar 

  • Feig, S.A., 1996, Assessment of radiation risk from screening mammography. Cancer, 77:818–822.

    Article  PubMed  CAS  Google Scholar 

  • Foster, K.R. and Finch, E.D., 1974, Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves. Science, 185:256–258.

    PubMed  CAS  Google Scholar 

  • Foster, K.R. and Schwan, H.P., 1989, Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17:25–104.

    PubMed  CAS  Google Scholar 

  • Franchois, A., Joisel, A., Pichot, C., and Bolomey, J.C., 1998, Quantitative microwave imaging with a 2.45-GHz planar microwave camera. IEEE Trans. Med. Imaging 17:550–561, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Frey, A.H., 1961, Auditory system response to radio frequency energy. Aerospace Medicine. 32:1140–1142.

    CAS  PubMed  Google Scholar 

  • Frey, A.H., 1962, Human auditory system response to modulated electromagnetic energy. J. Applied Physiology. 17:689–692.

    CAS  Google Scholar 

  • Frey, A.H., 1971. Biological function as influenced by low-power modulated rf energy. IEEE Trans. Microwave Theory and Tech. 19:153–164.

    Article  Google Scholar 

  • Frey, A.H., and Messenger, R., 1973, Human perception of illumination of pulsed UHF electromagnetic energy. Science, 181:356–358.

    PubMed  CAS  Google Scholar 

  • Gabriel, S., Lau, R.W., and Gabriel, C., 1996, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251–2269.

    Article  PubMed  CAS  Google Scholar 

  • Goss, S.A., Johnston, R.L., and Dunn, F., 1978, Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 64:423–457.

    Article  PubMed  CAS  Google Scholar 

  • Goss, S.A., Johnston, R.L., and Dunn, F., 1980, Compilation of empirical ultrasonic properties of mammalian tissues II. J. Acoust. Soc. Am. 68: 93–108.

    Article  PubMed  CAS  Google Scholar 

  • Gournay, L.S., 1966. Conversion of electromagnetic to acoustic energy by surface heating. J. Acoustic Society of Am., 40:1322–1330.

    Article  CAS  Google Scholar 

  • Guerquin-Kern, J.L., Gautherie, M., Peronnet, P., Jofre, L., and Bolomey, J.C., 1985, Active microwave tomographic imaging of isolated, perfused animal organs. Bioelectromagnetics, 6:145–156, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Guy, A.W., Taylor, E.M., Ashleman, B., and J.C. Lin, 1973, Microwave Interaction with Auditory Systems of Human and Cats, Proc. IEEE International Microwave Symp. Boulder, Colo., 1973, pp. 231–232.

    Google Scholar 

  • Guy, A.W., Lin, J.C., Chou, C.K, 1975a, Electrophysiological effects of electromagnetic fields on animals. In: Michaelson et al., editors. Fundamentals and Applied Aspects of Nonionizing Radiation. Plenum Press, New York. pp. 167–211.

    Google Scholar 

  • Guy, A.W., Chou, C.K., Lin, J.C., Christensen, D., 1975b. Microwave induced acoustic effects in mammalian auditory systems and physical materials. Annals NY Academ. Sciences, 247: 194–218.

    CAS  Google Scholar 

  • Joines, W.T., Jirtle, R.L., Rafal, D., and Schaefer, J., 1980, Microwave Power Absorption Differences Between Normal and Malignant Tissue, Int. J. Radiation Oncology Biol. Phys., 6:681–687.

    CAS  Google Scholar 

  • Joines, W.T., Zhang, Y., Li, C. and Jirtle, R.L., 1994, The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz”, Medical Physics, 21:547–550.

    Article  PubMed  CAS  Google Scholar 

  • Kerlikowske, K., Grady, D., Barclay, J., Sickles, E.A., and Ernster, V., 1996, Effect of age, breast density, and family history on the sensitivity of first screening mammography. JAMA 276:33–38.

    Article  PubMed  CAS  Google Scholar 

  • Kerlikowske, K. and Barclay, J., 1997, Outcomes of modern screening mammography. Monogr Natl Cancer Inst 22:105–111.

    PubMed  Google Scholar 

  • Kerlikowske, K., 1997, Efficacy of screening mammography among women aged 40 to 49 years and 50 to 69 years: comparison of relative and absolute benefit. J Natl Cancer Inst Monogr 22:79–86.

    PubMed  Google Scholar 

  • Kruger, R.A., Kopecky, K.K., Aisen, A.M., Reinecke, D.R., Kruger, G.A., Kiser, W.L. Jr., 1999, Thermoacoustic CT with radio waves: a medical imaging paradigm. Radiology. 211:275–8.

    PubMed  CAS  Google Scholar 

  • Kruger, R.A., Miller, K.D., Reynolds, H.E., Kiser, W.L. Jr, Reinecke, D.R., and Kruger, G.A., 2000, Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study. Radiology. 216:279–283.

    PubMed  CAS  Google Scholar 

  • Kruger, R.A. and Kiser, Jr W.L., 2001, Thermoacoustic CT of the Breast: pilot study observations. Proc. SPIE 4256:1–5.

    Article  Google Scholar 

  • Kruger, R.A., Stantz, K, M., Kiser, Jr W.L., 2002. Thermoacoustic CT of the Breast. Proc. SPIE 4682:521–525.

    Article  Google Scholar 

  • Ku, G. and Wang, L.V., 2000, Scanning thermoacoustic tomography in biological tissue. Med Phys. 27:1195–1202, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, K.S., Luebbers, R.J., 1993., The Finite Difference Time Domain Method for Electromagnetics. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Larsen, L.E. and Jacobi, J.H., 1979, Microwave scattering parameter imagery of an isolated canine kidney, Medical Physics. 6: 394–403, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J.C., 1976a, Microwave auditory effect-a comparison of some possible transduction mechanisms. J. Microwave Power. 11:77–81.

    CAS  Google Scholar 

  • Lin, J.C., 1976b, Microwave induced hearing sensation: some preliminary theoretical observations. J. Microwave Power. 11:295–298.

    CAS  Google Scholar 

  • Lin, J.C., 1976c, Theoretical analysis of microwave-generated auditory effects in animals and man. In: Johnson CC, Shore ML, editors. Biological Effects of Electromagnetic Waves, BRH/DEW, vol. I, pp. 36–48.

    Google Scholar 

  • Lin, J.C., 1977a, On microwave-induced hearing sensation. IEEE Trans. Microwave Theory Techniques. 25:605–613.

    Article  Google Scholar 

  • Lin JC. 1977b, Further studies on the microwave auditory effect. IEEE Trans. Microwave Theory Techniques. 25:936–941.

    Google Scholar 

  • Lin, J.C., 1977c, Calculations of frequencies and threshold of microwave-induced auditory signals. Radio Science 12/SS: 237–252.

    Google Scholar 

  • Lin, J.C., 1978, Microwave Auditory Effects and Applications. Springfield, Illinois: Charles C Thomas.

    Google Scholar 

  • Lin, J, C., 1980, The microwave auditory phenomenon. Proceedings of IEEE. 68: 67–73.

    Article  Google Scholar 

  • Lin, J.C., 1981, The microwave hearing effect. In: Illinger KH, editor. Biological Effects of Nonionizing Radiation, Amer. Chem. Soc., pp. 317–330.

    Google Scholar 

  • Lin, J.C., 1990, Auditory perception of pulsed microwave radiation. In: Gandhi OP, editor. Biological Effects and Medical Applications of Electromagnetic Fields. Prentice-Hall, New York, Chapter 12, pp. 277–318.

    Google Scholar 

  • Lin, J.C., 2001, Telecommunications health and safety: Hearing microwaves: the microwave auditory phenomenon, IEEE Antennas & Propagation Magazine, 43/6:166–168.

    Article  Google Scholar 

  • Lin, J.C., 2004, “Biomedical Applications of Electromagnetic Engineering,” In: R. Bansal, ed., Handbook of Engineering Electromagnetics, Marcel-Dekker, pp.

    Google Scholar 

  • Lin, J.C. and Chan, K.M. Microwave thermoelastic tissue imaging-system design. IEEE Trans. Microwave Theory Tech. 32: 854–860, 1984.

    Article  Google Scholar 

  • Lin, J.C. and Gandhi, O.P., 1996, Computational methods for predicting field intensity, In: C. Polk and E. Postow, eds. Handbook of Biological Effects of Electromagnetic Fields. (), CRC Press, Boca Raton, FL. pp. 337–402.

    Google Scholar 

  • Lin, J.C., Meltzer, R.J., and Redding, F.K., 1978, Microwave-evoked brainstem auditory responses. Proc. Diego Biomed. Symp. Academic Press, 17:451–466.

    Google Scholar 

  • Lin, JC., Meltzer, R.J., and Redding, F.K., 1979a, Microwave-evoked brainstem potential in cats, J. Microwave Power. 14: 291–296.

    CAS  Google Scholar 

  • Lin, J.C., Su, J.L., and Wang, Y.J., 1988, Microwave-induced thermoelastic pressure wave propagation in the cat brain. Bioelectromagnetics 9: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., Li, B., Xu, J., and Yu, J., 1992, Dielectric properties of human glioma and surrounding tissue. Int J Hyperthermia. 8: 755–760.

    PubMed  CAS  Google Scholar 

  • Meaney, P.M., Paulsen, K.D, Hartov, A., and Crane, R.K., 1996, Microwave imaging for tissue assessment: initial evaluation in multitarget tissue-equivalent phantoms. IEEE Trans. Biomed. Eng. 43:878–890, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Michaelson, S.M. and Lin, J.C., 1987, Biological Effects and Health Implications of Radiofrequency Radiation, Plenum Press, New York, pp.120–134.

    Google Scholar 

  • Nield, L.E., Qi, X., Yoo, S.J., Valsangiacomo, E.R., Hornberger, L.K., and Wright, G.A., 2002, MRI-based blood oxygen saturation measurements in infants and children with congenital heart disease. Pediatr Radiol. 32:518–522.

    Article  PubMed  Google Scholar 

  • NIH Consensus Development Panel., 1997, National Institutes of Health Consensus Development Conference Statement: Breast Cancer Screening for Women ages 40–49, J Natl Cancer Inst 1997;89:1015–26.

    Article  Google Scholar 

  • Olsen, R.G., 1982, Generation of acoustical images from the absorption of pulsed microwave energy, Acoustical Imaging, vol. 11, J.P. Powers, ed., Plenum, New York, pp. 53–59.

    Google Scholar 

  • Olsen, R.G. and Lin, J.C., 1981, Microwave pulse-induced acoustic resonances in spherical head models. IEEE Trans. Microwave Theory Techniques 29: 1114–1117.

    Article  Google Scholar 

  • Olsen, R.G. and Lin, J.C., 1983a, Microwave-induced pressurewave in mammalian brain, IEEE Trans. on Biomedical Engineering 30: 289–294.

    CAS  Google Scholar 

  • Olsen, R.G. and Lin, J.C., 1983b, Acoustical imaging of a model of a human hand using pulsed microwave irradiation. Bioelectromagnetics 4: 397–400.

    PubMed  CAS  Google Scholar 

  • Pennes, H.H., 1948, Analysis of tissue and arterial blood temperatures in resting forearm,” Journal of Applied Physiology, 1:93–122.

    PubMed  CAS  Google Scholar 

  • Plein, J.S., Ridgway, P., Jones, T.R., Bloomer, T.N., and Sivananthan, M.U., 2002,. Coronary artery disease: assessment with a comprehensive MR imaging protocol-initial results. Radiology. 225:300–307.

    PubMed  Google Scholar 

  • Ries, L.A.G., Kosary, C.L., Hankey, B.L., Miller, D.S., and Edwards, B.K., eds. 1999, The SEER Cancer Statistics Review, 1973–1996. National Cancer Institute, Bethesda, MD.

    Google Scholar 

  • Rogers, J.A., Sheppard, R.J., Grant, E.H., Bleehen, N.M., and Honess, D.J., 1983, The dielectric properties of normal and tumor mouse tissue between 50 MHz and 10 GHz Br J Radiol.; 56(665): 335–338.

    Article  PubMed  CAS  Google Scholar 

  • Semenov, S.Y., Svenson, R.H., Boulyshev, A.E., Souvorov, A.E., Borisov, V.Y., Sizov, Y., Starostin, A.N., Dezern, K.R., Tatsis, G.P., and Baranov, V.Y., 1996, Microwave tomography-two-dimensional system for biological imaging. IEEE Transactions on Biomedical Engineering 43:869–877.

    Article  PubMed  CAS  Google Scholar 

  • Semenov, S.Y., Svenson, R.H., Bulyshev, A.E., Souvorov, A.E., Nazarov, A.G., Sizov, Y.E., Posukh, V.G., Pavlovsky, A., Repin, P.N., Starostin, A.N., Voinov, B.A., Taran, M., Tatsis, G.P., Baranov, V.Y., 2002, Three-dimensional microwave tomography: initial experimental imaging of animals. IEEE Trans Biomed Eng. 49:55–63.

    Article  PubMed  Google Scholar 

  • Stark, D.D. and Bradley Jr., W.G., 1999, Magnetic Resonance Imaging, 3rd ed., St. Louis: Mosby-Year Book, 1999.

    Google Scholar 

  • Su, J.L., 1988, Computer assisted tomography using microwave-induced thermoelastic waves. PhD dissertation, University of Illinois, Chicago.

    Google Scholar 

  • Su, J.L. and Lin, J.C., 1987, Thermoelastic signatures of tissue phantom absorption and thermal expansion. IEEE Transactions on Biomedical Engineering 34:179–182.

    PubMed  CAS  Google Scholar 

  • Su, J.L. and Lin, J.C., 1991, Computerized Thermoelastic Wave Tomography, World Cong. Med Physics and Biomed Engg, Kyoto, Japan, July, 1991.

    Google Scholar 

  • Taflove A. 1995, Computational Electrodynamics: the Finite Difference Time Domain Method. Artech House, Norwood, MA.

    Google Scholar 

  • Taylor, E.M. and Ashleman, B.T., 1974, Analysis of central nervous involvement in the microwave auditory effect. Brain Research 74:201–208.

    Article  PubMed  CAS  Google Scholar 

  • Tyazhelov, V.V., Tigranian, R.E., Khizhnian, E.P., and Akoev, I.G., 1979, Some pecularities of auditory sensations evoked by pulsed microwave fields. Radio Science 14(supp 6):259–263.

    Google Scholar 

  • Ueno, S. and Iriguchi N., 2000, Principles and Horizons of Magnetic Resonance Imaging, In Advances in Electromagnetic Fields in Living Systems, vol. 3, Lin, J.C., ed., Kluwewr/Plenum, New York, pp. 39–71.

    Google Scholar 

  • Watanabe, Y., Tanaka, T., Taki, M., and Watanabe, S.I., 2000, FDTD analysis of microwave hearing effect, IEEE Trans. Microwave Theory Techniques 48:2126–2132.

    Article  Google Scholar 

  • White, R.M., 1963, Generation of elastic waves by transient surface heating. J. Applied Physics 34:3559–3567.

    Article  Google Scholar 

  • Xu, M. and Wang, L.V., 2002, Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration. Med Phys. 29:1661–1669.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lin, J.C. (2005). Microwave Thermoelastic Tomography and Imaging. In: Lin, J.C. (eds) Advances in Electromagnetic Fields in Living Systems. Advances in Electromagnetic Fields in Living Systems, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-24024-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-24024-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23997-2

  • Online ISBN: 978-0-387-24024-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics