Skip to main content

Fetal Magnetocardiography

  • Chapter

Part of the book series: Advances in Electromagnetic Fields in Living Systems ((AEFL,volume 4))

Abstract

Fetal magnetocardiography is a non-invasive method to study the fetal heart: the patient (i.e., the mother) is not even touched. A fetal magnetocardiogram (MCG) is the registration of a component of the magnetic field generated by the electrical activity of the fetal heart. Usually the component of the magnetic field that is perpendicular to the maternal abdomen is measured. Fetal MCGs show the typical features that are found in ECGs of adults (i.e. a P-wave, QRS-complex and T-wave). To enable the discrimination between pathological and healthy fetuses, values of the duration of these waveforms are collected in several research groups. These durations can be used as a reference. Measurements show that MCGs of fetuses with severe congenital heart disease have an abnormal shape. Hence, fetal MCGs may be of help in the early intra-uterine detection of congenital heart anomalies and the progress of the disease. Fetal magnetocardiography can also be used to classify fetal arrhythmias.

The fetal MCG is a very weak signal (about 10−13 tesla) compared with fields that are present in a hospital. The Earth’s magnetic field, for example, is about 5 × 10−5 tesla. The only magnetic field sensor that is sensitive enough to measure fetal MCGs is a SQUID. This sensor has to be cooled in liquid helium. The vessel containing the helium and the sensor is positioned near the maternal abdomen. At present, fetal MCGs are measured within magnetically shielded rooms in order to avoid disturbing fields. Signal processing techniques, such as filtering and averaging, are used to enhance the signal-to-noise ratio. The electrical activity in the heart gives rise to currents in the fetus and maternal abdomen. These currents also contribute to the fetal MCG. In order to estimate this influence, simulations are carried out and discussed in the last section of this chapter on fetal MCG.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anastasiadis P.G., Anninos P., Assimakopoulos E., Koutlaki N., Kotini A. and Galaxios G., 2001, Fetal heart rate patterns in normal and ritrodine-treated pregnancies, detected by magnetocardiography, J. Matern. Fetal Med., 10(5):350–354.

    PubMed  CAS  Google Scholar 

  2. Andelfinger G., Fouron J.C., Sonesson S.E. and Proulx F., 2001, Reference values for time intervals between atrial and ventricular contractions of the fetal heart measured by two Doppler techniques, Am. J. of Cardiol, 88(12):1433–1436.

    Article  CAS  Google Scholar 

  3. Bachir W. and Dunajski Z., 2002, Flux transformer for fetal magnetocardiography in an unshielded environment, Proc. 13 th Int. Conf. on Biomagnetism, H. Nowak, J. Haueisen, F. Gieszler and R. Huonker, eds., VDE Verlag GMBH, Berlin, pp. 627–629.

    Google Scholar 

  4. Baker P.N., Johnson I.R., Gowland P.A., Hykin J., Adams V., Mansfield P. and Worthington B.S., 1995, Measurement of fetal liver, brain and placental volumes with echo-planar magnetic resonance imaging, Brit. J. Obstet. Gynaecol., 102:35–39.

    CAS  Google Scholar 

  5. Bell A.J. and Sejnowski T.J., 1995, An information-maximization approach to blind separation and blind deconvolution, Neural Computation, 7:1129–1159.

    PubMed  CAS  Google Scholar 

  6. Berul C.I., 2000, Neonatal long QT Syndrome and sudden cardiac death, Progress in Pediatr. Cardiol., 11: 47–54.

    Article  Google Scholar 

  7. Brace R.A., 1998, Fluid distribution in the fetus and neonate, in: Fetal and Neonatal Physiology, R.A. Polin and W.W. Fox, eds., Saunders company, Philadelphia, second edn., pp. 1703–1713.

    Google Scholar 

  8. Brace R.A. and Wolf E.J., 1989, Normal amniotic fluid changes throughout pregnancy, Am. J. Obstet. Gynecol., 161(2):382–388.

    PubMed  CAS  Google Scholar 

  9. Brake H.J.M. ter, Rijpma A.P., Stinstra J.G., Borgmann J., Holland H.J., Krooshoop H.J.G., Peters M.J., Flokstra J., Quartero H.W.P. and Rogalla H., 2002, Fetal magnetocardiography: Clinical relevance and feasibility, Physica C, 368:10–17.

    Article  Google Scholar 

  10. Clark J.M. and Case C.L., 1990, Fetal arrhythmias, in: Pediatric Arrhythmias, P.C. Gilette and A. Garson, eds., Saunders, Philadelphia, pp. 293–302.

    Google Scholar 

  11. Cooley R.L., Montano N., Cogliati C., van de Borne P., Richenbacher W., Oren R. and Somers V.K., 1998, Evidence for a central origin of the low frequency oscillation in R-R-interval variability, Circulation, 98(6):556–561.

    PubMed  CAS  Google Scholar 

  12. Copel J.A., Buyon J.P. and Kleinman C., 1995, Successful in utero therapy of fetal heart block, Am. J. Obstet. Gynecol., 173(5):1384–1390.

    Article  PubMed  CAS  Google Scholar 

  13. Costa Monteiro E., Schleussner E., Kausch S., Grimm B., Schneider A., Hall Barbosa C. and Haueisen J., 2001, Fetal cardiac activity analysis during twin pregnancy using a multi-channel SQUID system, Physica C, 354:87–90.

    Article  CAS  Google Scholar 

  14. Costarino A.T. and Brans Y.W., 1998, Fetal and neonatal body fluid composition with reference to growth and development, in: Fetal and Neonatal Physiology, R.A. Polin and W.W. Fox, eds., Saunders company, Philadelphia, second edn., pp. 1713–1721.

    Google Scholar 

  15. Dawes G.S., Moulden M. and Redman C.W.G., 1990, Limitations of antenatal foetal heart rate monitors, Am. J. Obstet. Gynecol., 162:170–173.

    PubMed  CAS  Google Scholar 

  16. De Luca F., Cametti C., Zimatore G., Maraviglia B. and Pachi A., 1996, Use of low-frequency electrical impedance measurements to determine phospholopid content in amniotic fluid, Phys Med Biol, 41:1863–1869.

    Article  PubMed  Google Scholar 

  17. DePasquale N.P. and Burch G.E., 1963, The electrocardiogram, ventricular gradient and spatial vectorcardiogram during the first week of life, Am. J. Cardiol., 482–493.

    Google Scholar 

  18. Gabriel S., Lau R.W. and Gabriel C., 1996, The dielectric properties of biological tissue: II Measurements in the frequency range 10Hz to 20GHz, III Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol., 41:2251–2293.

    Article  PubMed  CAS  Google Scholar 

  19. Geddes L.A. and Baker L.E., 1967, The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist, Med. Biol. Eng, 5:271–293.

    PubMed  CAS  Google Scholar 

  20. Grimm B., Haueisen J., Huotilainen M., Lange S., van Leeuwen P., Menéndez T., Peters M.J., Schleussner E. and Schneider U., 2002, Recommended standards for fetal magnetocardiography (fMCG), submitted to Circulation.

    Google Scholar 

  21. Hamada H., Horigome H., Asaka M., Shigemitsu S., Mitsui T., Kubo T., Kandori A. and Tsukada K., 1999, Prenatal diagnosis of long QT syndrome using fetal magnetocardiography, Prenatal. Diag., 19(7):677–680.

    Article  PubMed  CAS  Google Scholar 

  22. Haykin S., 2002, Adaptive Filters, Prentice Hall.

    Google Scholar 

  23. Hosono T., Chiba Y., Shinto M., Miyashita S., Muramaki K., Kandori A. and Tsukada K., 2001, A case of fetal complete heart block recorded by magnetocardiography, ultrasound and direct fetal electrocardiography, Fetal. Diag. Ther., 16:38–41.

    Article  CAS  Google Scholar 

  24. Hosono T., Kawamata K., Chiba Y., Kandori A. and Tsukada K., 2002, prenatal diagnosis of long QT syndrome using magnetocardiography: a case report and review of the literature, Prenat. Diagn., 22:198–200.

    Article  PubMed  Google Scholar 

  25. Horigome H., Shihono J., Shigemitsu S., Asaka M., Matsui A., Kandori A., Miyashita T. and Tsukada K., 2001, Detection of cardiac hypertrophy in the fetus by approximation of the current dipole using magnetocardiography, Pediatric. Res., 50:242–245.

    CAS  Google Scholar 

  26. Kähler C., Grimm B., Schleussner E., Schneider A., Schneider U. and Nowak H., 2001, The application of fetal magnetocardiography to investigate fetal arrhythmia and congenital heart defects, Prenat. Diagn., 21:176–182.

    Article  PubMed  Google Scholar 

  27. Kahn A.R., 1963, Transmission characteristics in fetal electrocardiography, pp. 134–135 In: 16th annual conference on engineering in medicine and biology.

    Google Scholar 

  28. Kariniemi V., Ahopelto J., Karp J.P. and Katila T.E., 1974, The fetal magnetocardiogram, J. Perinat. Med. 2(3):214–216.

    Article  PubMed  CAS  Google Scholar 

  29. Lange S., Van Leeuwen P., Klein A., Leven A., Hatzmann W. and Grönemeyer D., 2002, Heart rate variability in growth retarded fetuses as determined by fetal magnetocardiography, in: Proc. 13 th Int. Conf. on Biomagnetism, H. Nowak, J. Haueisen, F. Gieszler and R. Huonker, eds., VDE Verlag GMBH, Berlin, pp. 633–635.

    Google Scholar 

  30. Leeuwen P. van, Lange S., Bettermann H., Grönemeyer D. and Haltzmann W., 1999a, Fetal heart rate variability and complexity in the course of pregnancy, Early Hum. Devel., 54: 259–269.

    Article  Google Scholar 

  31. Leeuwen P. van, Hailer B., Bader W., Geissler J., Trowitzsch E. and Grönemeyer D.H., 1999b, Magnetocardiography in the diagnosis of fetal arrhythmia, Brit. J. Obstet. Gynaecol., 106(11):1200–1208.

    Google Scholar 

  32. Leeuwen P. van and Schüszler, 2000, Fetal magnetocardiography in twin pregnancy, Proc. 10th Int. Conf. on Biomagnetism, C.J. Aine et al., eds., Springer, New York, 585–588.

    Google Scholar 

  33. Leeuwen P. van, Klein A., Geue D., Lange S., and Grönemeyer D., 2001a, Bestimmung der fetalen Herzzeitenintervalle anhand der Magnetokardiographie: Einfluss der Anzahl der evaluierten Messkanäle, Biomed. Tech., 43Suppl 1:256–257.

    Google Scholar 

  34. Leeuwen P. van, Lange S., Hackmann J., Klein A., Hatzmann W. and Grönemeyer D., 2001b, Assessment of intra-uterine growth retardation by fetal magnetocardiography, in: Biomag2000 Proc. 12th Int Conf on Biomagnetism, pp. 603–606.

    Google Scholar 

  35. Leuthold A, Wakai R.T. and Martin C.B., 1999, Noninvasive in utero assessment of PR and QRS intervals from the fetal magnetocardiogram, Early Hum. Dev., 54(3), 235–243.

    Article  PubMed  CAS  Google Scholar 

  36. Li Z., Wakai R.T., Strasburger J.F., 2002, Amplitude of the P and QRS components of the fetal MCG in normal and fetal arrhythmia subjects, in: Proc. 13 th Int. Conf. on Biomagnetism, H. Nowak, J. Haueisen, F. Gieszler and R. Huonker, eds., VDE Verlag GMBH, Berlin, pp. 636–638.

    Google Scholar 

  37. Magann E.F., Bass J.D., Chauhan S.P., Young R.A., Withworth N.S. and Morrison J.C., 1997, Amniotic fluid volume in normal singleton pregnancies, Obstet. & Gynecol., 90(4):524–528.

    Article  CAS  Google Scholar 

  38. Menéndez T., Achenbach S., Beinder E., Hofbeck M., Schmid O., Singer H., Moshage W. and Daniel W.G., 2000, Prenatal diagnosis of QT prolongation by magn etocardiography, PACE, 23: 1305–1307.

    PubMed  Google Scholar 

  39. Menéndez T., Achenbach S., Beinder E., Hofbeck M., Klinghammer L., Singer H., Moshage W. and Daniel W., 2001, Usefulness of magnetotocardiography for the investigation of fetal arrhythmias, Am. J. Cardiol., 88:334–336.

    Article  PubMed  Google Scholar 

  40. Moshage W., Achenbach S., Gohl K. and Bachmann K, 1996, Int. J. Card. Imaging, 12:47–59. 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Namin P.E., 1967, Pediatric Electrocardiography and Vectorcardiography.

    Google Scholar 

  42. Namin P.E. and Miller R.A., 1966, The normal electrocardiogram and vectorcardiogram in children, in: Electrocardiography in Infants and Children, D.E. Cassel and R.F. Zugler, eds., pp. 99–115.

    Google Scholar 

  43. Oldenburg J.T. and Macklin M., 1977, Changes in the conduction of fetal electrocardiogram to the maternal abdominal surface during gestation, Am. J. Obstet. Gynecol., 129(4):425–433.

    PubMed  CAS  Google Scholar 

  44. Oostendorp T.F., 1989, Modeling the fetal ECG, Ph.D. thesis, University of Nijmegen, The Netherlands. Oostendorp T.F., van Oosterom A. and Jongsma H.W., 1989, Electrical properties of biological tissues involved in the conduction of foetal ECG, Med. Biol. Eng. Comput., 322–324.

    Google Scholar 

  45. Oudijk M.A., Michon M.M., Kleinman C.S., Kapusta L., Stoutenbeek P., Visser G.H. and Meijboom E.J., 2000, Sotalol in the treatment of fetal dysrhythmias, Circulation, 101(23):2721–2726.

    PubMed  CAS  Google Scholar 

  46. Peters M.J., Stinstra J.G. and Hendriks M., 2001, Estimation of the electrical conductivity of human tissue, Electromagnetics, 21:545–557.

    Article  Google Scholar 

  47. Piéri J.F., Crowe J.A., Hayes-Gill B.R., Spencer C.J., Bhogal K. and James D.K., 2001, Compact long-term recorder for the transabdominal foetal and maternal electrocardiogram, Med. Biol. Eng. Comput, 39:118–125.

    Article  PubMed  Google Scholar 

  48. Podt M, van Duuren M.J., Hamster A.W., Flokstra J. and Rogalla H., 1999, Two-stage amplifier based on a double relaxation oscillation superconducting quantum interference device, Appl. Phys. letters, 75(15):2316–2318.

    Article  CAS  Google Scholar 

  49. Quartero H.W.P., Stinstra J.G., Golbach E.G.M., Meijboom E.J. and Peters M.J., 2002, Clinical implications of fetal magnetocardiography, Ultrasound Obstet Gynecol, 20(2):142–153.

    Article  PubMed  CAS  Google Scholar 

  50. Richter M., Schreiber T. and Kaplan D.T., 1998, Fetal ECG extraction with nonlinear state-space projections, IEEE Trans Biomed. Eng., 45(1):133–137.

    Article  PubMed  CAS  Google Scholar 

  51. Roche J.B. and Hon E.H., 1965, The fetal electrocardiogram, Am. J. Obstet. Gynecol., 92:1149–1159.

    PubMed  CAS  Google Scholar 

  52. Rush S., Mehtar M. and Baldwin A.F., 1984, Normalisation of body impedance data: a theoretical study, Med Biol Eng Comput, 22:285–286.

    PubMed  CAS  Google Scholar 

  53. Schwartz P.J., Stramba-Badiale M., Segantini A., Austoni P., Bosi G., Giorgetti R., Grancini F., Marni E.D., Perticone F., Rosti D. and Salice P., 1998, Prolongation of the QT interval and the sudden infant death syndrome, New Engl. J. Med., 338(24):1709–1714.

    Article  PubMed  CAS  Google Scholar 

  54. Shier D., Butler J. and Lewis R., 1996, Hole’s Human Anatomy & Physiology. WCB McGraw-Hill., Boston.

    Google Scholar 

  55. Stinstra J.G., 2001, The reliability of the fetal magnetocardiogram, PhD thesis, University of Twente, The Netherlands.

    Google Scholar 

  56. Stinstra J.G. and Peters M.J, 2002, The influence of fetoabdomenal tissues on fetal ECGs and MCGs, Arch. Physiol. Biochem., 110(3): 165–176.

    Article  PubMed  CAS  Google Scholar 

  57. Stinstra J.G., Krooshoop H.J.G., Muis B., Huirne J.A.F., Quartero H.W.P. and Peters M.J., 1999a, The influence of the vernix caseosa on foetal magnetocardiograms, in: Recent Advances in Biomagnetism, T. Yoshimoto, M. Kotani, S. Kuriki, H. Karibe and N. Nakasato, eds., Tohoku University Press, Sendai, pp. 1070–1073.

    Google Scholar 

  58. Stinstra J.G., Golbach E.G.M., Peters M.J. and Quartero H.W.P., 2001a, Extracting reliable data from the fetal MCG, in: Biomag2000 Proceedings 12th Int Conf on Biomagnetism, pp. 591–594.

    Google Scholar 

  59. Stinstra J.G., Golbach E.G.M., van Leeuwen P., Lange S., Menéndez T., Moshage W., Schleußner E., Kähler C., Horigome H., Shigemitsu S. and Peters M.J., 2002, Multicentre study on the fetal cardiac time intervals using magnetocardiography, Br. J. Obstet, Gyneacol., 109:1235–1243

    CAS  Google Scholar 

  60. Stoll C., Garne E., Clementi M. and EUROSCAN study group, 2001, Evaluation of prenatal diagnosis of associated congenital heart diseases by fetal ultrasonographic examination in Europe, Prenat. Diagn., 21:243–252.

    Article  PubMed  CAS  Google Scholar 

  61. Strasburger J.F., 2000, Fetal arrhythmias, Progress in Pediatr. Cardiol., 11:1–17.

    Article  Google Scholar 

  62. Vrba, J., 1996, SQUID gradiometers in real environments, in: SQUID Sensors: Fundamentals, Fabrication and Application, H. Weinstock, ed., Kluwer, Dordrecht, pp.117–178.

    Google Scholar 

  63. Wakai R.T., Leuthold A.C., Cripe L. and Martin C.B., 2000a, Assessment of fetal rhythm in complete congenital heart block by magnetocardiography, PACE, 23:1047–1050.

    PubMed  CAS  Google Scholar 

  64. Wakai R.T., Lengle J.M. and Leuthold A.C., 2000a, Transmission of electric and magnetic fetal cardiac signals in a case of ectopia cordis: the dominant role of vernix caseosa, Phys. Med. Biol., 45:1989–1995.

    Article  PubMed  CAS  Google Scholar 

  65. Wakai R.T., Chen M., Zhao H., van Veen B. and Strasburger J., 2001, Assessment of fetal rhythm at 20 weeks’ gestation by fetal magnetocardiography, Biomed. Tech., 46:188–190.

    Article  Google Scholar 

  66. Meijler G. van, Genderingen H.R. van, and Meijler F.L., 1997, Atrioventriculaire geleidingstijd bij te vroeg geborenen ongeveer de helft van die bij volwassenen, Ned. Tijdscr. Geneeskd., 141(5):244–247.

    Google Scholar 

  67. Zarzoso V., Millet-Roig J. and Nandi A.K., 2000, Fetal ECG extraction from maternal skin electrodes using blind source separation and adaptive noise cancellation techniques, Comp. in Cardiol., 27:431–434.

    Google Scholar 

  68. Zarzoso V. and Nandi A.K., 2001, Noninvasive fetal electrocardiogram extraction: Blind separation versus adaptive noise cancellation, IEEE Trans on Biomed. Eng., 48:12–18.

    Article  CAS  Google Scholar 

  69. Zhao H., Wakai R.T., Strasburger J., Gotteiner N. and Cuneo B., 2002, Assessment of fetal heart rhythm and rate in complete congenital heart block by fetal magnetocardiography, in: Proc. 13 th Int. Conf. on Biomagnetism, H. Nowak, J. Haueisen, F. Gieszler and R. Huonker, eds., VDE Verlag GMBH, Berlin, pp. 617–619.

    Google Scholar 

  70. Zhuravlev Y.E., Rassi D., Mishin A.A. and Emery S.J., 2002, Dynamic analysis of beat-to-beat fetal heart rate variability recorded by squid magnet ometer: quantification of sympatho-vagal balance, Early Hum. Developm., 66:1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Peters, M.J., Stinstra, J.G., Uzunbajakau, S., Srinivasan, N. (2005). Fetal Magnetocardiography. In: Lin, J.C. (eds) Advances in Electromagnetic Fields in Living Systems. Advances in Electromagnetic Fields in Living Systems, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-24024-1_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-24024-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23997-2

  • Online ISBN: 978-0-387-24024-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics