Skip to main content

Glass-Containing Composite Materials. Alternative Reinforcement Concepts

  • Chapter
Handbook of Ceramic Composites
  • 8828 Accesses

Abstract

Glass-containing composites with interpenetrating, graded or layered microstructures as well as hybrid glass and glass-ceramic matrix composites are discussed. Aspects of their fabrication, microstructural characterisation, properties and applications are reviewed. These materials have advantages regarding ease of processing and/or special properties which can be achieved, in comparison with conventional dispersion-reinforced and fibre-reinforced glasses and glass-ceramics. The use of these materials in specific areas is expected to increase in the future, including structural, functional and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Clarke, Interpenetrating Phase Composites, J. Am. Ceram. Soc. 75, 739–759 (1992).

    Article  CAS  Google Scholar 

  2. F. K. Ko, Preform Fibre Architecture for Ceramic-Matrix Composites, Am. Ceram. Soc. Bull. 68, 401–414 (1989).

    CAS  Google Scholar 

  3. Ph. Colomban and M. Wey, Sol-Gel of Matrix Net-Shape Sintering in 3D Fibre Reinforced Ceramic Matrix Composites, J. Europ. Ceram. Soc. 17, 1475–1483 (1997).

    Article  CAS  Google Scholar 

  4. B. N. Cox, A View of 3D Composites, in The Processing, Properties and Applications of Metallic and Ceramic Materials, M. H. Loretto and C. J. Beevers eds., University of Birmingham (1992). pp. 1087–1098.

    Google Scholar 

  5. A. R. Boccaccini, C. Kaya, K. K. Chawla, Use of Electrophoretic Deposition in the Processing of Fibre Reinforced Ceramic and Glass Matrix Composites. A Review, Composites Part A 32, 997–1006 (2001).

    Article  Google Scholar 

  6. J. P. Brazel, Multidirectionally Reinforced Ceramics, in Engineers Material Handbook, Vol. 1: Composites, C. A. Dostal ed., American Society for Metals International, Metals Park, OH (1988), pp. 933–940.

    Google Scholar 

  7. H.-K. Liu, Investigation on the Pressure Infiltration of Sol-Gel Processed Textile Ceramic Matrix Composites, J. Mat. Sci. 31, 5093–5099 (1996).

    Article  CAS  Google Scholar 

  8. T.-W. Chou and J.-M. Yang, Structure-Performance Maps of Polymeric, Metal and Ceramic Matrix Composites, Metall. Trans. A 17A, 1547–1559 (1986).

    CAS  Google Scholar 

  9. A. S. Fareed, M. J. Koczak, F. Ko and G. Layden, Fracture of SiC/LAS Ceramic Composites, in Advances in Ceramics, Vol. 22: Fractography of Glasses and Ceramics, ed., by V. D. Frechette and J. R. Varner, American Ceramic Society (1988), pp. 261–278.

    Google Scholar 

  10. A. R. Boccaccini, R. Liebald, W. Beier and K. K. Chawla, Fabrication, Mechanical Properties and Thermal Stability of a Novel Glass Matrix Composite Material Reinforced by Short Oxycarbide Fibres, J. Mat. Sci. 37, 4379–4384 (2002).

    Google Scholar 

  11. R. W. Rice, Fabrication of Ceramics with Designed Porosity, Ceram. Eng. Sci. Proc. 23(4), 149–158 (2002).

    CAS  Google Scholar 

  12. F. F. Lange, B.V. Velamakanni and A. G. Evans, Method for Processing Metal-Reinforced Ceramic Composites, J. Am. Ceram.Soc. 73, 388–393 (1990).

    Article  CAS  Google Scholar 

  13. P. Colombo and J. R. Hellmann, Ceramic Foams from Preceramic Polymers, Mater. Res. Innovations 6, 260–272 (2002).

    Article  CAS  Google Scholar 

  14. T. Moritz, G. Werner, G. Tomandl, M. Mangler and H. Eichler, Sintering of Thin Ceramic Layers with a Graded Pore Structure, Br. Ceram. Proc. No. 60, Vol. 2 (1999) 245–246.

    Google Scholar 

  15. K. Morinaga, H. Takebe and Y. Kuromitsu, Interactions between Al2O3 Substrate and Glass Melts, in Ceramic Microstructures: Control at the Atomic Level, A. P. Tomsia and A. Glaeser eds., Plenum Press, New York (1998) pp. 535–542.

    Google Scholar 

  16. H. Hornberger, P. M. Marquis, S. Christiansen and H. P. Strunk, Microstructure of a High Strength Alumina Glass Composite, J. Mat. Res. 11, 855–858 (1996).

    CAS  Google Scholar 

  17. S. Christiansen, M. Albrecht, H. P. Strunk, H. Hornberger, P. M. Marquis and J. Franks, Mechanical Properties and Microstructural Analysis of a Diamond-Like Carbon Coating on an Alumina/Glass Composite, J. Mat. Res. 11, 1934–1942 (1996).

    CAS  Google Scholar 

  18. S.-J. Lee, W. M. Kriven and H.-M. Kim, Shrinkage-Free, Alumina-Glass Dental Composites via Aluminium Oxidation, J. Am. Ceram. Soc. 80, 2141–2147 (1997).

    CAS  Google Scholar 

  19. D.-J. Kim, M.-H. Lee and C.-E. Kim, Mechanical Properties of Tape-Cast Alumina-Glass Dental Composites, J. Am. Ceram. Soc. 82, 3167–3172 (1999).

    CAS  Google Scholar 

  20. J.-M. Tian, Y.-L. Zhang, S.-X. Zhang X.-P. Luo, Mechanical Properties and Microstructure of Alumina-Glass Composites, J. Am. Ceram. Soc. 82, 1592–1594 (1999).

    CAS  Google Scholar 

  21. Q. Zhu, G. deWith, L. J. M. G. Dortmans and F. Feenstra, Subcritical Crack Growth Behaviour of Al2O3-Glass Dental Composites, J. Biomed. Mater. Res. Part B: Appl. Biomater. 65B, 233–238 (2003).

    Article  CAS  Google Scholar 

  22. D. Y. Lee, D.-J. Kim, B.-Y. Kim and Y.-S. Song, Effect of Alumina Particle Size and Distribution on Infiltration Rate and Fracture Toughness of Alumina-Glass Composites Prepared by Melt Infiltration, Mat. Sci. Eng. A341, 98–105 (2003).

    Google Scholar 

  23. L. Pröbster, Four Year Clinical Study of Glass-Infiltrated, Sintered Alumina Crowns, J. Oral Rehabil. 23, 147–151 (1996).

    Google Scholar 

  24. M. Stephan, Nickel, K. G., Haftung und Festigkeit von ZrO2-verstärkter Dentalkeramik als Verbundwerkstoff, in Werkstoffwoche 98, Band IV, H. Planck and H. Stallforth eds., Wiley-VCH, Weinheim (1999), 281–286.

    Google Scholar 

  25. P. N. Kumta, Processing Aspects of Glass-Nicalon Fibre and Interconnected Porous Aluminium Nitride Ceramic and Glass Composites, J. Mat. Sci. 31, 6229–6240 (1996).

    Article  CAS  Google Scholar 

  26. P. N. Kumta, T. Mah, P. D. Jero and R. J. Kerans, Processing of 3D Interconnected Porous Aluminium Nitride Composites for Electronic Packaging, Mat. Lett. 21, 329–333 (1994).

    Google Scholar 

  27. C. Ries, Herstellung und Eigenschaften von glasinfiltrierter ZrO2-Keramik, in DKG Jahrestagung, Kurzreferate (1995) pp. 21–22.

    Google Scholar 

  28. D. Y. Lee, D.-J-Kim and Y.-S. Song, Properties of Glass-Spinel Composites Prepared by Melt Infiltration, J. Mat. Sci. Lett. 21, 1223–1226 (2002).

    Article  CAS  Google Scholar 

  29. K. Langguth, S. Böckle, E. Müller and G. Roewer, Polysilane-Derived Porous SiC Preforms for the Preparation of SiC-Glass Composites, J. Mat. Sci. 30, 5973–5978 (1995).

    Google Scholar 

  30. Travitzky, N. A., Mechanical Properties and Microstructure of Mullite Whisker-Reinforced Magnesium Aluminosilicate Glass with Cordierite Composition, J. Mat. Sci. Lett. 17 (1998) 1609–1611.

    Article  CAS  Google Scholar 

  31. W. B. Hillig, Melt Infitration Approach to Ceramic Matrix Composites, J. Am. Ceram. Soc. 71, C-96–C-99 (1988).

    Article  CAS  Google Scholar 

  32. M. K. Brun, W. B. Hillig, H. C. McGuigan, High Temperature Mechanical Properties of a Continuous Fibre Reinforced Composite Made by Melt Infiltration, Ceram. Eng. Sci. Proc. 10[7–8], 611–621 (1989).

    CAS  Google Scholar 

  33. Lange, F. F., Powder Processing Science and Technology for Increased Reliability, J. Am. Ceram. Soc. 72, 3–15 (1989).

    Article  CAS  Google Scholar 

  34. E. D. Rodeghiero, Tse, O. K., Gianelis, E. P., Interconnected Metal-Ceramic Composites by Chemical Means, JOM, 34[3], 26–28 (1995).

    Google Scholar 

  35. Y. Fang, F. Yu and K.W. White, Microstructural Modification to Improve Mechanical Properties of a 70%Si3N4-30%BAS Self-Reinforced Ceramic Composite, J. Mat. Sci. 37, 4411–4417 (2002).

    Article  CAS  Google Scholar 

  36. F. Ye, S. Chen, M. Iwasa, Synthesis and Properties of Barium Aluminosilicate Glass-Ceramic Composites Reinforced with in situ grown Si3N4 whiskers, Scipta Mat. 48, 1433–1438 (2003).

    Google Scholar 

  37. S. Suresh and A. Mortensen, Functionally Graded Metal and Metal-Ceramic Composites. Part 2, Thermomechanical Behaviour, Int. Mater. Rev. 42, 85–116 (1997).

    CAS  Google Scholar 

  38. J. Jitcharoen, N. P. Padture, A. E. Giannakopoulos and S. Suresh, Hertzian-Crack Suppression in Ceramics with Elastic-Modulus-Graded Surfaces, J. Am. Ceram. Soc. 81, 2301–2308 (1998).

    CAS  Google Scholar 

  39. L. Esposito, E. Saiz, A. P. Tomsia and R. M. Cannon, High Temperature Colloidal Processing for Glass/Metal and Glass/Ceramic FGM’s, in Ceramic Microstructures: Control at the Atomic Level, A. P. Tomsia, A. Glaeser eds., Plenum Press, New York (1998), pp. 503–512.

    Google Scholar 

  40. S. Maruno, S. Ban, Y.-F. Wang, H. Iwata and H. Itoh, Properties of Functionally Gradient Composite Consisting of Hydroxyapatite Containing Glass Coated Titanium and Characters for Bioactive Implant, J. Ceram. Soc. Japan 100, 362–367 (1992).

    CAS  Google Scholar 

  41. S. Ban, J. Hasegawa and S. Maruno, Electrochemical Corrosion Behaviour of Hydroxyapatite-Glass-Titanium Composite, Biomaterials 12, 205–209 (1991).

    Article  CAS  Google Scholar 

  42. K. Yamada, K. Imamura, H. Itoh, H. Iwata and S. Maruno, Bone Bonding Behaviour of the Hydroxyapatite Containing Glass-Titanium Composite Prepared by the Cullet Method, Biomaterials 22, 2207–2214 (2001).

    Article  CAS  Google Scholar 

  43. J. M Gomez-Vega, E. Saiz, A. P. Tomsia, T. Oku, K. Suganuma, G. W. Marshall, and S. J. Marshall, Novel Bioactive Functionally Graded Coatings on Ti6Al4V, Adv. Mat. 12, 894–898 (2000).

    Article  CAS  Google Scholar 

  44. C. Vitale Brovarone, E. Verne, A. Krajewski, and A. Ravaglioli, Graded Coatings on Ceramic Substrates for Biomedical Applications, J. Europ. Ceram. Soc. 21, 2855–2862 (2001).

    Article  Google Scholar 

  45. J. S. Moya, Layered Ceramics, Adv. Mat. 7, 185–189 (1995).

    Article  CAS  Google Scholar 

  46. P. Z. Cai, D. J. Green and G. L. Messing, Mechanical Characterization of Al2O3/ZrO2 Hybrid Composites, J. Europ. Ceram. Soc. 18, 2025–2034 (1998).

    Article  CAS  Google Scholar 

  47. D. Sherman and D. Schlumm, The Mechanical Behaviour of Ceramic-Metal Laminate Under Thermal Shock, J. Mater. Res. 14, 3544–3551 (1999).

    CAS  Google Scholar 

  48. Z. Chen and J. J. Mecholsky Jr., Damage-Tolerant Laminated Composites in Thermal Shock, J. Mat. Sci. 28, 6365–6370 (1993).

    Article  CAS  Google Scholar 

  49. S. J. Bennison, A. Jagota and C. A. Smith, Fracture of Glass/Poly(vinyl butyral) (Butacite®) Laminates in Biaxial Flexure, J. Am. Ceram. Soc. 82, 1761–1770 (1999).

    Google Scholar 

  50. P. Weigt and G. Helmich, Security Glazing. Choosing the Most Cost Effective Glazing to Meet Every Security Need, in Proc. 29 th Int. Symposium in Automotive Technology and Automation, D. Röller ed., Automotive Automation Ltd., Croydon (1997), pp. 1369–1381.

    Google Scholar 

  51. A. Seal, S. K. Dalui, A. K. Mukhopadhyay, K. K. Phani, H. S. Maiti, Mechanical Behaviour of Glass Polymer Multilayer Composites, J. Mat. Sci. 38, 1063–1071 (2003).

    Article  CAS  Google Scholar 

  52. S. Wuttiphan, B. R. Lawn and N. P. Padture, Crack Suppression in Strongly Bonded Homogeneous/Heterogeneous Laminates: A Study on Glass/Glass-ceramic Bilayers, J. Am. Ceram. Soc. 79, 634–640 (1996).

    CAS  Google Scholar 

  53. D. C. Clupper and J. J. Mecholsky, Toughening of Tape Cast Bioglass® by Lamination with Stainless Steel 316 L, J. Mat. Sci. Lett. 20, 1885–1888 (2001).

    Article  CAS  Google Scholar 

  54. D. C. Clupper, J. J. Mecholsky, G. P. LaTorre and D. C. Greenspan, Bioactivity of Bioglass®-Steel and Bioglass®-Titanium Laminate Composites, J. Mat. Sci. Lett. 20, 959–960 (2001).

    Article  CAS  Google Scholar 

  55. T. L. Jessen, B. A. Bender and D. Lewis III, Mechanical Performance of Model and Surface-Reinforced SiC Fiber /CMC Laminate Systems, Key Eng. Mat. 108–110, 195–202 (1995).

    Google Scholar 

  56. W. A. Cutler, F.W. Zok and F. F. Lange, Mechanical Behaviour of Several Hybrid Ceramic-Matrix-Composite Laminates, J. Am. Ceram. Soc. 79, 1825–1833 (1996).

    Article  CAS  Google Scholar 

  57. W. A. Cutler, F. W. Zok, F. F. Lange and P. G. Charalambides, Delamination Resistance of Two Hybrid Ceramic-Composite Laminates, J. Am. Ceram. Soc. 80, 3029–3037 (1997).

    CAS  Google Scholar 

  58. T. L. Jessen and D. Lewis III, Effect of Composite Layering on the Fracture Toughness of Brittle Matrix/Particulate Composites, Composites 26, 67–71 (1995).

    Article  CAS  Google Scholar 

  59. T. L. Jessen and D. Lewis III, Fracture Toughness of Graded Metal-Particulate/Brittle-Matrix Composites, J. Am. Ceram. Soc. 73, 1405–1408 (1990).

    Article  CAS  Google Scholar 

  60. A. R. Boccaccini, J. Janczak, D. M. R. Taplin and M. Köpf, The Multibarriers-System as a Materials Science Approach for Industrial Waste Disposal and Recycling: Application of Gradient and Multilayered Microstructures, Environmental Technology 17, 1193–1203 (1996).

    Article  CAS  Google Scholar 

  61. K. Chyung, Strengthening of Glass-Ceramic Laminates by Differential Densification, in Advances in Ceramics, Vol. 4: Nucleation and Crystallisation in Glasses, J. H. Simmons, D. R. Uhlmann and G. H. Beall eds., The American Ceramic Society, Ohio (1982), pp. 341–352.

    Google Scholar 

  62. P. Hing and A. Adotey, The Sinterability and Electrical Conductivity of Some TiSi2/Glass Systems, J. Mat. Proc. Technol. 38, 465–482 (1993).

    Article  Google Scholar 

  63. M. Sroda, and L. Stoch, Glasses for Alumina Laminates, in Proc. Int. Congress on Glass, Volume 2. Extended Abstracts, Society of Glass Technology, Sheffield, UK (2001), p. 978–979.

    Google Scholar 

  64. Y. Goto, M. Kato, T. Fukusawa, T. Kameda, Microstructure of Rare-Earth Silicate/Silicon Carbide Layered Composites, J. Mat. Sci. Lett. 21, 121–124 (2002).

    Article  CAS  Google Scholar 

  65. Chen, L., Goto, T., Tu, R., Guo, Ch., Hirai, T., Preparation and Corrosion Resistance of Graded Glass Coating on PbTe, Mat. Sci. Forum, 308–311, 256–261 (1999).

    Google Scholar 

  66. F. Smeacetto, M. Ferraris, M. Salvo, Oxidation Barrier Multilayer Coatings for Carbon-Carbon Composites, Ceram. Eng. Sci. Proc. 23(4), 477–481 (2002).

    Article  CAS  Google Scholar 

  67. R. Gadow, A. Killinger, C. Li, Ceramic on Glass and Glass-Ceramic Layer Composites for Industrial Applications, Ceram. Eng. Sci. Proc. 23(4), 125–131 (2002).

    CAS  Google Scholar 

  68. M. Arnold, A. R. Boccaccini and G. Ondracek, Theoretical and experimental considerations on the thermal shock resistance of sintered glasses and ceramics using modeled microstructure-property correlations, J. Mat. Sci. 31, 463–469 (1996).

    Article  CAS  Google Scholar 

  69. K. Satyamurthy and D. P. H. Hasselman, Effect of SpatiallyVarying Porosity on Magnitude of Thermal Stresses During Steady State Heat Flow, J. Am. Ceram. Soc. 62, 431–432 (1979).

    Google Scholar 

  70. A. R. Boccaccini, Incorporation of Porosity to Control the Residual Thermal Stresses in Ceramic Composites and Laminates, The European Physical Journal. Applied Physics 2, 197–202 (1998).

    Article  CAS  Google Scholar 

  71. S. B. Haug, L. R. Dharani and D. R. Carroll, Fabrication of Hybrid Ceramic Matrix Composites, Appl. Comp. Mater. 1, 177–181 (1994).

    Article  CAS  Google Scholar 

  72. N. Chawla, K. K. Chawla, M. Koopman, B. Patel, C. Coffin and J. I. Eldridge, Thermal-shock behavior of a Nicalon-fiber-reinforced hybrid glass-ceramic composite, Comp. Sci. Tecnol. 61, 1923–1930 (2001).

    Article  CAS  Google Scholar 

  73. L. A. Lewinshon, Hybrid Whisker-Fiber-Reinforced Glass-Matrix Composites with Improved Transverse Toughness, J. Mat. Sci, Lett. 12, 1478–1480 (1993).

    Article  Google Scholar 

  74. K. P. Gadkaree, Particulate-Fibre-Reinforced Glass Matrix Hybrid Composites, J. Mat. Sci. 27, 3827–3834 (1992).

    Article  CAS  Google Scholar 

  75. D. C. Jia, Y. Zhou, T. C. Lei, Ambient and Elevated Temperature Mechanical Properties of Hot-pressed Fused Silica Matrix Composite, J. Europ. Ceram. Soc. 23, 801–808 (2003).

    Article  CAS  Google Scholar 

  76. R. Reinicke, K. Friedrich, W. Beier and R. Liebald, Tribological Properties of SiC and C-Fibre Reinforced Glass Matrix Composites, Wear 225–229, 1315–1321 (1999).

    Google Scholar 

  77. R. Reinicke, K. Friedrich, W. Beier and R. Liebald, SiC-and C-Fiber Reinforced Glass Matrix Composites for Tribological Applications, Adv. Eng. Mat. 3, 423–427 (2001).

    Article  CAS  Google Scholar 

  78. I. Dlouhy, Z. Chlup, D. N. Boccaccini, S. Atiq, A. R. Boccaccini, Fracture Behaviour of Hybrid Glass Matrix Composites: Thermal Ageing Effects, Composites Part A 34, 1177–1185 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Boccaccini, A.R. (2005). Glass-Containing Composite Materials. Alternative Reinforcement Concepts. In: Bansal, N.P. (eds) Handbook of Ceramic Composites. Springer, Boston, MA . https://doi.org/10.1007/0-387-23986-3_21

Download citation

Publish with us

Policies and ethics