Skip to main content

Abstract

The need for high temperature, oxidation-resistant materials has driven research into oxide-oxide composites. These materials require a crack deflecting mechanism to prevent brittle failure; both interface coatings and porous matrices have proven successful in providing this function. Composites containing interface coatings are still in the research stage, while porous matrix materials are currently more advanced. A review of porous matrix composite properties is given, along with composite processing information. This chapter provides an overview of oxide-oxide composite technology, potential applications, current research issues, and what might be expected in future derivatives. This review will center on high-temperature (> 1000°C) oxide-oxide composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. O. Elfstrom, The Role of Advanced Materials in Aircraft Engines, Nouvelle Revue D’Aeronautique et D’Astronautique, [2] 81–85 (1998).

    Google Scholar 

  2. R. C. Robinson and J. L. Smialek, SiC Recession Caused by SiO2 Scale Volatility under Combustion Conditions: I, Experimental Results and Empirical Model, J. Am. Ceram. Soc., 82[7] 1817–1825 (1999).

    CAS  Google Scholar 

  3. N. S. Jacobson, Corrosion of Silicon-Based Ceramics in Combustion Environments, J. Am. Ceram. Soc., 76[1] 3–28 (1993).

    Article  CAS  Google Scholar 

  4. C. G. Levi, F.W. Zok, J. Y. Yang, M. Mattoni, and J. P. A. Lofvander, Microstructural design of stable porous matrices for all-oxide ceramic composites., Z. Metallkd., 90[12] 1037–1047 (1999).

    CAS  Google Scholar 

  5. D. B. Marshall and J. B. Davis, Ceramics for future power generation technology: fiber reinforced oxide composites, Current Opin. in Solid State and Mater. Sci., 5 283–289 (2001).

    Article  CAS  Google Scholar 

  6. A. G. Evans, D. B. Marshall, F. Zok, and C. Levi, Recent advances in oxide-oxide composite technology, Advanced Composite Materials, 8[1] 17–23 (1999).

    CAS  Google Scholar 

  7. R. J. Kerans, R. S. Hay, and T. A. Parthasarathy, Structural Ceramic Composites, Current Opinion in Solid State and Materials Science, 4 445–451 (1999).

    Article  Google Scholar 

  8. D. Lewis III, Future Opportunities and Critical Needs for Advanced Ceramics and Ceramic Matrix Composites in Aerospace Applications, Ceram. Eng. Sci. Proc., 21[3] 3–14 (2000).

    CAS  Google Scholar 

  9. H. Kaya, The application of ceramic-matrix composites to the automotive ceramic gas turbine, Comp. Sci. and Tech., 59 861–872 (1999).

    Article  Google Scholar 

  10. H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, and T. Sasa, Potential application of ceramic matrix composites to aero-engine components, Comp. Part A, 30 489–496 (1999).

    Article  Google Scholar 

  11. Y. Liang and S. P. Dutta, Application trend in advanced ceramic technologies, Technovation, 21 61–65 (2001).

    Article  Google Scholar 

  12. R. John, L. P. Zawada, and J. L. Kroupa, Stresses due to temperature gradients in ceramic-matrix-composite aerospace components, J. Am. Ceram. Soc., 82[1] 161–168 (1999).

    CAS  Google Scholar 

  13. B. Jurf, J. Paretti, et. al., Fabrication and Testing of Insulated CMC Exhaust Pipe. Presented at 14th Advanced Aerospace Materials and Processes Conference. Dayton, OH, June 12, 2003.

    Google Scholar 

  14. J. A. Morrison and K. M. Krauth, Design and Analysis of a CMC Turbine Blade Tip Seal for a Land-Based Power Turbine, Ceram. Eng. Sci. Proc., 19[4] 249–256 (1998).

    CAS  Google Scholar 

  15. J. M. Staehler and L. Z. Zawada, Performance of four ceramic-matrix composite divergent flap inserts following ground testing on an F110 turbofan engine, J. Am. Ceram. Soc., 83[7] 1727–1738 (2000).

    CAS  Google Scholar 

  16. T. J. McMahon, Advanced Hot Gas Filter Development, Ceram. Eng. Sci. Proc., 21[3] 47–56 (2000).

    CAS  Google Scholar 

  17. M. G. Holmquist, T. C. Radsick, O. H. Sudre, and F. F. Lange, Fabrication and testing of all-oxide CFCC tubes, Comp. Part A, 34 163–170 (2003).

    Article  Google Scholar 

  18. L. J. Korb, C. A. Morant, R. M. Calland, and C. S. Thatcher, The shuttle orbiter thermal protection system, Am. Ceram. Soc. Bull., 60[11] 1188 (1981).

    Google Scholar 

  19. J. B. Davis, D. B. Marshall, K. S. Oka, R. M. Housley, and P. E. D. Morgan, Ceramic composites for thermal protection systems, Comp. Part A, 30 483–488 (1999).

    Article  Google Scholar 

  20. R. J. Kerans, R. S. Hay, T. A. Parthasarathy, and M. K. Cinibulk, Interface design for oxidation-resistant ceramic composites, J. Am Ceram. Soc., 85[11] 2599–2632 (2002).

    CAS  Google Scholar 

  21. M.-Y. He, A. G. Evans, and J. W. Hutchinson, Crack deflection at an interface between dissimilar elastic materials: role of residual stresses, Int. J. Solids Struct., 31[24] 3443–3455 (1994).

    Google Scholar 

  22. M.-Y. He and J. W. Hutchinson, Crack deflection at an interface between dissimilar elastic materials, Int. J. Solids Struct., 25[9] 1053–1067 (1989).

    Google Scholar 

  23. R. J. Kerans and T. A. Parthasarathy, Crack Deflection in Ceramic Composites and Fiber Coating Design Criteria, Composites Part A, 30A[4] 521–24 (1999).

    Article  CAS  Google Scholar 

  24. K. T. Faber, Ceramic Composite Interfaces: Properties and Design, Annu. Rev. Mater. Sci., 27 499–524 (1997).

    Article  CAS  Google Scholar 

  25. R. J. Kerans, The Role of Coating Compliance and Fiber/Matrix Interfacial Topography on Debonding in Ceramic Composites, Scr. Met. Mat., 32[4] 505–509 (1995).

    Article  CAS  Google Scholar 

  26. R.W. Goettler, S. Sambasivan, V. Dravid, and S. Kim, Interfaces in Oxide Fiber — Oxide Matrix Ceramic Composites, in Computer Aided Design of High Temperature Materials, A. Pechenik, R. Kalia, and P. Vashishta, Eds., Oxford University Press, (1999). p. 333–349.

    Google Scholar 

  27. K. A. Keller, T.-I. Mah, T. A. Parthasarathy, E. E. Boakye, P. Mogilevsky, and M. K. Cinibulk Effectiveness of monazite coatings in oxide/oxide composites after long-term exposure at high temperature, J. Am. Ceram. Soc., 86[2] 325–332 (2003).

    CAS  Google Scholar 

  28. G. H. Cullum, Sol-Gel Processing of Ceramic Composites, in Ceramics and Ceramic Matrix Composites, S. R. Levine, Ed., American Society of Mechanical Engineers, New York, (1992). p. 139–150.

    Google Scholar 

  29. G. H. Cullum, Ceramic Matrix Composite Fabrication and Processing: Sol-Gel Infiltration, in The Handbook on Continuous Fiber-Reinforced Ceramic Matrix Composites, R. Lehman, S. El-Rahaiby, and J. Wachtman, Eds., Purdue Research Foundation, (1995).

    Google Scholar 

  30. L. P. Zawada, R. S. Hay, S. S. Lee, and J. Staehler, Characterization and high-temperature mechanical behavior of an oxide/oxide composite, J. Am. Ceram. Soc., 86[6] 981–990 (2003).

    Article  CAS  Google Scholar 

  31. T. J. Dunyak, D. R. Chang, and M. L. Millard. Thermal Aging Effects in Oxide/Oxide Ceramic Matrix Composites, NASA. Conference Publication, [No. 3235, pt. 2] pp. 675–89 (1994).

    Google Scholar 

  32. T. J. Lu, Crack Branching in All-Oxide Ceramic Composites, J. Am. Ceram. Soc., 79[1] 266–74 (1996).

    Article  CAS  Google Scholar 

  33. W.-C. Tu, F. F. Lange, and A. G. Evans, Concept for a Damage-Tolerant Ceramic Composite with “Strong” Interfaces, J. Am. Ceram. Soc., 79[2] 417–24 (1996).

    Article  CAS  Google Scholar 

  34. A. G. Hegedus, Ceramic Bodies of Controlled Porosity and Process for Making Same. U.S. Patent No. 5,017,522, May 21, 1991. Hexcel Corporation: USA.

    Google Scholar 

  35. M. G. Harrison, M. L. Millard, and A. Szweda, Consolidated Member and Method and Preform for Making. U.S. Patent No. 5,306,554, April 26, 1994. General Electric Corporation, USA.

    Google Scholar 

  36. A. Szweda, M. L. Millard, and M. G. Harrison, Fiber Reinforced Ceramic Composite Member, U.S. Patent no. 5,488,017 Jan 30, 1996. General Electric Co.: USA.

    Google Scholar 

  37. A. Szweda, M. L. Millard, and M. G. Harrison, Fiber reinforced ceramic matrix composite member and method for making U.S. Patent No. 5,601,674. Feb 11, 1997. General Electric Company, USA.

    Google Scholar 

  38. L. P. Zawada, Longitudinal and Transthickness Tensile Behavior of Several Oxide/Oxide Composites, Cer. Eng. Sci. Proc., 19[3] 327–339 (1998).

    CAS  Google Scholar 

  39. C. G. Levi, J. Y. Yang, B. J. Dalgleish, F. W. Zok, and A. G. Evans, Processing and Performance of an All-Oxide Ceramic Composite, J. Am. Ceram. Soc., 81[8] 2077–2086 (1998).

    CAS  Google Scholar 

  40. F. F. Lange, W. C. Tu, and A. G. Evans, Processing of Damage Tolerant, Oxidation Resistant Ceramic-Matrix Composites, Mater. Sci. Eng., A195 145–150 (1995).

    CAS  Google Scholar 

  41. B. N. Cox and F. W. Zok, Advances in Ceramic Composites Reinforced by Continuous Fibers, Current Opinion in Solid State & Materials Science, 1[5] 666–73 (1996).

    Article  CAS  Google Scholar 

  42. A. G. Evans, The mechanical properties of reinforced ceramic, metal and intermetallic matrix composites, Mater. Sci. Eng., A, 143[1–2] 63–76 (1991).

    Google Scholar 

  43. A. G. Evans, F.W. Zok, and J. B. Davis, The Role of Interfaces in Fiber-Reinforced Brittle Matrix Composites, Compos. Sci. Technol., 42 3–24 (1991).

    Article  CAS  Google Scholar 

  44. M. A. Mattoni, J. Y. Yang, C. G. Levi, and F.W. Zok, Effects of matrix porosity on the mechanical properties of a porous-matrix, all-oxide ceramic composite”. J. Am. Ceram. Soc., 84[11] 2594–2602 (2001).

    Article  CAS  Google Scholar 

  45. 3M Nextel Ceramic Textiles Technical Notebook. 3M Ceramic Fibers and Textiles, St Paul MN. (2001).

    Google Scholar 

  46. D. M. Wilson. High Temperature Oxide Fibers. 105th Annual Meeting of the American Ceramic Society. Nashville, TN, April 29, 2003.

    Google Scholar 

  47. M. Koopman, S. Duncan, K. K. Chawla, and C. Coffin, Processing and characterization of barium zirconate coated alumina fibers/alumina matrix composites, Comp. Part A, 32 1039–1044 (2001).

    Article  Google Scholar 

  48. M. Holmquist, R. Lundberg, O. Sudre, A. G. Razzell, L. Molliex, J. Benoit, and J. Adlerborn, Alumina/alumina composite with a porous zirconia interphase — Processing, properties and component testing, J. Eur. Ceram. Soc., 20 599–606 (2000).

    Article  CAS  Google Scholar 

  49. Properties and Benefits of Sapphire: A Quick Reference Guide. Saphikon, Inc., Milford, NH.(2003).

    Google Scholar 

  50. S. A. Newcomb and R. E. Tressler, Slow Crack Growth in Sapphire Fibers at 800C to 1500C, J. Am. Ceram. Soc., 76[10] 2505–2512 (1993).

    Article  CAS  Google Scholar 

  51. D. W. Richerson, Ceramic Matrix Composites, in Composites Engineering Handbook, P. K. Mallick Ed., Marcel Dekker, New York (1997). p. 983–1038.

    Google Scholar 

  52. S. T. Mileiko, V. I. Kazmin, V. M. Kiiko, and A. M. Rudnev, Oxide/oxide composites produced by the internal crystallization method, Comp. Sci. and Tech., 57 1363–1367 (1997).

    Article  CAS  Google Scholar 

  53. A. A. Kolchin, V. M. Kiiko, N. S. Sarkissyan, and S. T. Mileiko, Oxide/oxide composites with fibres produced by internal crystallisation, Comp. Sci. and Tech., 61 1079–1082 (2001).

    Article  CAS  Google Scholar 

  54. G. S. Corman, Creep of Yttrium Aluminum Garnet Single Crystals, J. Mat. Sci. Let., 12 379–382 (1993).

    Article  CAS  Google Scholar 

  55. D.M. Wilson and L. R. Visser, High performance oxide fibers for metal and ceramic composites, Comp. Part A, 32 1143–1153 (2001).

    Article  Google Scholar 

  56. G. N. Morscher, K. C. Chen, and K. S. Mazdiyasni, Creep Resistance of Developmental Polycrystalline Yttrium-Aluminum Garnet Fibers, Cer. Eng. Sci. Proc., 15[4] 181–188 (1994).

    Google Scholar 

  57. B. H. King and J.W. Halloran, Polycrystalline Yttrium Aluminum Garnet Fibers from Colloidal Sols, J. Am. Ceram. Soc., 78[8] 2141–2148 (1995).

    Article  CAS  Google Scholar 

  58. T. Mah, T. A. Parthasarathy, D. Petry, and L. E. Matson, Processing, Structure and Properties of Alumina-YAG Eutectic Fibers, Ceram. Eng. & Sci. Proc., 14[7–8] 622–638 (1993).

    CAS  Google Scholar 

  59. S. C. Farmer and A. Sayir, Tensile strength and microstructure of Al2O3-ZrO2 hypo-eutectic fibers, Eng. Fract. Mech., 69 1015–1024 (2002).

    Article  Google Scholar 

  60. J. M. Yang and X. Q. Zhu, Thermo-Mechanical Stability of Directionally Solidified Al2O3-ZrO2 (Y2O3) Eutectic Fibers, Scripta Mater., 36[9] 961–966 (1997).

    Article  CAS  Google Scholar 

  61. C. H. Ruscher, S. T. Mileiko, and H. Schneider, Mullite single crystal fibres produced by the internal crystallization method (ICM), J. Eur. Ceram. Soc., 23 3113–3117 (2003).

    Article  CAS  Google Scholar 

  62. S. T. Peters and Y. M. Tarnopol’skii, FilamentWinding, in Composites Engineering Handbook, P. K. Mallick Ed., Marcel Dekker, New York (1997). p. 515–548.

    Google Scholar 

  63. A. R. Bhatti and P. M. Farries, Preparation of Long-fiber-reinforced Dense Glass and Ceramic Matrix Composites, in Carbon/carbon, Cement and Ceramic Matrix Composites, R. Warren, Ed., Elsevier Science Ltd., Oxford, (2000). p. 645–667.

    Google Scholar 

  64. E. H. Moore, C. A. Folsom, K. A. Keller, and T. Mah, 3D Composite Fabrication through Matrix Slurry Pressure Infiltration, Ceram. Eng. Sci. Proc., 15[4] 113–120 (1994).

    Google Scholar 

  65. S. M. Sim and R. J. Kerans, Slurry Infiltration of 3-DWoven Composites, Ceram. Eng. Sci. Proc., 13 632–641 (1992).

    CAS  Google Scholar 

  66. A. I. Kingdon, R. F. Davis, and M. M. Thackeray, Engineering properties of multicomponent and multiphase oxides, in Engineered Materials Handbook, Vol. 4, Ceramics and Glasses, ASM international, Metals City, OH (1991). p. 758–774.

    Google Scholar 

  67. M. Miyayama, K. Koumoto, and H. Yanagida, Engineering properties of single oxides, in Engineered Materials Handbook, Vol. 4, Ceramics and Glasses, ASM international, Metals City, OH (1991). p. 748–757.

    Google Scholar 

  68. J. J. Haslam, K. E. Berroth, and F. F. Lange, Processing and properties of an all-oxide composite with a porous matrix, J. Eur. Ceram. Soc., 20 607–618 (2000).

    Article  CAS  Google Scholar 

  69. M. Schmucker, A. Grafmuller, and H. Schneider, Mesostructure of WHIPOX all oxide CMCs, Comp. Part A, 34 613–622 (2003).

    Article  CAS  Google Scholar 

  70. H. Schneider, J. Goring, B. Kanka, and M. Schmucker, WHIPOX: a new oxide fibre/oxide matrix composite for high-temperature applications, Keram. Zeit., 53[9] 788–791 (2001).

    CAS  Google Scholar 

  71. A. Souto and F. Guitian, Purification of mullite by reduction and volatilization of impurities, J. Am. Ceram. Soc., 82[10] 2660–2664 (1999).

    CAS  Google Scholar 

  72. N. S. Jacobson, E. J. Opila, and K. N. Lee, Oxidation and corrosion of ceramics and ceramic matrix composites, Curr. Opin. Solid State Mater. Sci., 5 301–309 (2001).

    Article  CAS  Google Scholar 

  73. K. N. Lee, N. S. Jacobson, and R. A. Miller, Refractory oxide coatings on SiC ceramics, MRS Bull., 19[10] 35–38 (1994).

    CAS  Google Scholar 

  74. J. A. Haynes, M. J. Lance, K. M. Cooley, M. K. Ferber, R. A. Lowden, and D. P. Stinton, CVD mullite coatings in high-temperature, high-pressure air-H2O, J. Am. Ceram. Soc., 83[3] 657–659 (2000).

    CAS  Google Scholar 

  75. S. C. Butner, personal communication.

    Google Scholar 

  76. L. P. Zawada, J. Staehler, and S. G. Steel, Consequence of intermittent exposure to moisture and salt fog on the high-temperature fatigue durability of several ceramic matrix composites, J. Am. Ceram. Soc., 86[8] 1282–1291 (2003).

    CAS  Google Scholar 

  77. J. T. Kretchik, Regulatory Forecast, Chemical Health and Safety, 10[4] 36 (2003).

    Google Scholar 

  78. K. D. Rosenman, M. J. Reilly, and C. Rice, Silicosis among foundry workers: Implication for the need to revise the OSHA standard, Occ. Health & Indust. Med., 36[1] 40 (1997).

    Google Scholar 

  79. S. G. Steel, L. P. Zawada, and S. Mall, Fatigue behavior of a Nextel(tm) 720/alumina (N720/A) composite at room temperature, Ceram. Eng. Sci. Proc., 22[3] 695–702 (2001).

    CAS  Google Scholar 

  80. M. K. Cinibulk, K. Keller, T. Mah, and T. A. Parthasarathy, Nextel 610 and 650 Fiber Reinforced Porous Alumina-YAG Matrix Composites, Ceram. Eng. Sci. Proc., 22[3] 677–686 (2001).

    CAS  Google Scholar 

  81. M. K. Cinibulk, K. A. Keller, T. Mah, and T. A. Parthasarathy, Nextel 610 Fiber-Reinforced Alumina-YAG Porous Matrix Composites, Ceram. Eng. Sci. Proc., 23[3] 629–636 (2002).

    Google Scholar 

  82. J. D. French, J. Zhao, M. P. Harmer, H. M. Chan, and G. A. Miller, Creep of Duplex Microstructures, J. Am. Ceram. Soc., 77[11] 2857–2865 (1994).

    Article  CAS  Google Scholar 

  83. N. P. Bansal and J. I. Eldridge, Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites, Ceram. Eng. Sci. Proc., 18[3] 379–389 (1997).

    CAS  Google Scholar 

  84. R.W. Goettler, S. Sambasivan, and V. P. Dravid, Isotropic Complex Oxides as Fiber Coatings for Oxide-Oxide CFCC, Ceram. Eng. Sci. Proc., 18[3] 279–286 (1997).

    CAS  Google Scholar 

  85. M. H. Lewis, A. Tye, and et al., Development of Interfaces in Oxide Matrix Composites, Key Eng. Mater., 164–165 351–356 (1999).

    Article  Google Scholar 

  86. P. E. D. Morgan, D. B. Marshall, and R. M. Housley, High Temperature Stability of Monazite-Alumina Composites, Mat. Sci. Eng., A195 215–222 (1995).

    CAS  Google Scholar 

  87. P. E. D. Morgan and D. B. Marshall, Ceramic Composites of Monazite and Alumina, J. Am. Cer. Soc., 78[6] 1553–63 (1995).

    Article  CAS  Google Scholar 

  88. T. A. Parthasarathy, E. Boakye, M. K. Cinibulk, and M. D. Petry, Fabrication and Testing of Oxide/Oxide Microcomposites with Monazite and Hibonite as Interlayers, J. Am. Ceram. Soc., 82[12] 3575–3583 (1999).

    CAS  Google Scholar 

  89. K. K. Chawla, H. Liu, J. Janczak-Rusch, and S. Sambasivan, Microstructure and properties of monazite (LaPO4) coated saphikon fiber/alumina matrix composites, J. Eur. Ceram. Soc., 20 551–559 (2000).

    Article  CAS  Google Scholar 

  90. D. H. Kuo and W.M. Kriven, Chemical stability, microstructure and mechanical behavior of LaPO4-containing ceramics, Mat. Sci. Eng., A210 123–134 (1996).

    CAS  Google Scholar 

  91. R. L. Callender and A. R. Barron, Formation and evaluation of highly uniform aluminate interface coatings for sapphire fiber reinforced ceramic matrix composites (FRCMCs) using carboxylate-alumoxane nanoparticles, J. Mater. Sci., 36 4977–4987 (2001).

    Article  CAS  Google Scholar 

  92. D.-H. Kuo, W. M. Kriven, and T. J. Mackin, Control of Interfacial Properties through Fiber Coatings: Monazite Coatings in Oxide-Oxide Composites, J. Am. Ceram. Soc., 80[12] 2987–2996 (1997).

    CAS  Google Scholar 

  93. K. A. Keller, T. Mah, E. E. Boakye, T. A. Parthasarathy, and P. Mogilevsky. Evaluation of Dense Monazite Fiber-Coatings in Oxide-Oxide Minicomposites. Presented at the 27th Annual Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites. Cocoa Beach, FL, January 29, 2003, 2003.

    Google Scholar 

  94. D. B. Marshall and W. C. Oliver, Measurement of Interfacial mechanical Properties in Fiber-Reinforced Ceramic Composites, J. Am. Ceram. Soc., 70[8] 542–48 (1987).

    Article  CAS  Google Scholar 

  95. R. J. Kerans and T. A. Parthasarathy, Theoretical Analysis of the Fiber Pullout and Pushout Tests, J. Am. Ceram. Soc., 74[7] 1585–1596 (1991).

    Article  CAS  Google Scholar 

  96. T. A. Parthasarathy, P. D. Jero, and R. J. Kerans, Extraction of Interface Properties from the Fiber Push-out Test, Scripta Metall. et Mater., 25[11] 2457–2462 (1991).

    Article  CAS  Google Scholar 

  97. T. A. Parthasarathy, D. B. Marshall, and R. J. Kerans, Analysis of the Effect of Interfacial Roughness on Fiber Debonding and Sliding in Brittle Matrix Composites, Acta Met., 42[11] 3773–3784 (1994).

    CAS  Google Scholar 

  98. P. D. Jero, R. J. Kerans, and T. A. Parthasarathy, Effect of Interfacial Roughness on the Frictional Stress Measured Using Pushout Tests, J. Am. Cer. Soc., 74[11] 2793–2801 (1991).

    Article  CAS  Google Scholar 

  99. J. B. Davis, R. S. Hay, D. B. Marshall, P. E. D. Morgan, and A. Sayir, Influence of Interfacial Roughness on Fiber Sliding in Oxide Composites with La-Monazite Interphases., J. Am. Ceram. Soc., 86[2] (2003).

    Google Scholar 

  100. R. S. Hay, Monazite and Scheelite Deformation Mechanisms, Cer. Eng. Sci. Proc., 21[4] 203–218 (2000).

    CAS  Google Scholar 

  101. K. A. Keller, T. Mah, E. E. Boakye, T. A. Parthasarathy, and P. Mogilevsky. Evaluation of Nextel 610/Monazite/Alumina Composites at High Temperature. Presented at the 105th Annual Meeting of The American Ceramic Society. Nashville, TN, April 30, 2003.

    Google Scholar 

  102. A. Cazzato, M. Colby, D. Daws, J. Davis, P. Morgan, J. Porter, S. Butner, and B. Jurf, Monazite Interface Coatings in Polymer and Sol-Gel derived Ceramic Matrix Composites, Ceram. Eng. Sci. Proc., 18[3] 269–278 (1997).

    CAS  Google Scholar 

  103. J. B. Davis, D. B. Marshall, and P. E. D. Morgan, Monazite Containing Oxide-Oxide Composites, J. Eur. Ceram. Soc., 19 2421–2426 (1999).

    Article  CAS  Google Scholar 

  104. E. E. Boakye, R. S. Hay, P. Mogilevsky, and L. M. Douglas, Monazite Coatings on Fibers: II, Coating Without Strength Degradation, J. Am. Ceram. Soc, 84[12] 2793–2801 (2001).

    CAS  Google Scholar 

  105. J. B. Davis, D. B. Marshall, and P. E. D. Morgan, Oxide Composites of Al2O3 and LaPO4, J. Eur. Ceram. Soc., 19 2421–2426 (1999).

    Article  CAS  Google Scholar 

  106. J. B. Davis, D. B. Marshall, R. M. Housley, and P. E. D. Morgan, Machinable Ceramics Containing Rare-Earth Phosphates, J. Am. Ceram. Soc., 81[8] 2169–2175 (1998).

    CAS  Google Scholar 

  107. C. Kaya, E. G. Butler, A. Selcuk, A. R. Boccaccini, and M. H. Lewis, Mullite (Nextel 720) fibre-reinforced mullite matrix composites exhibiting favourable thermomechancial properties, J. Eur. Ceram. Soc., 22 2333–2342 (2002).

    Article  CAS  Google Scholar 

  108. E. Boakye, R. S. Hay, M. D. Petry, and T. A. Parthasarathy, Sol-Gel Synthesis of Zircon-Carbon Precursors and Coatings of Nextel 720 Fiber Tows, Cer. Eng. Sci. Proc. A, 20[3] 165–172 (1999).

    CAS  Google Scholar 

  109. M. K. Cinibulk, T. A. Parthasarathy, K. A. Keller, and T. Mah, Porous Rare-Earth Aluminate Fiber Coatings for Oxide-Oxide Composites, Ceram. Eng. Sci. Proc., 21[4] 219–228 (2000).

    CAS  Google Scholar 

  110. J. B. Davis, J. P. A. Lofvander, A. G. Evans, E. Bischoff, and M. L. Emiliani, Fiber Coating Concepts for Brittle Matrix Composites, J. Am. Cer. Soc., 76[5] 1249–1257 (1993).

    Article  CAS  Google Scholar 

  111. G. N. Morscher, D. R. Bryant, and R. E. Tressler, Environmental Durability of BN-Based Interphases (for SiCf-SiCm Composites) in H2O-Containing Atmospheres at Intermediate Temperatures, Ceram. Eng. Sci. Proc., 18[3] 525 (1997).

    CAS  Google Scholar 

  112. E. Lara-Curzio, P. F. Tortorelli, and K. L. More, Stress-Rupture of Nicalon(TM)/SiC at Intermediate Temperatures, Ceram. Eng. Sci. Proc., 18[4] 209–219 (1997).

    CAS  Google Scholar 

  113. A. G. Evans, F. W. Zok, R. M. McMeeking, and Z. Z. Du, Models of High Temperature, Environmentally Assisted Embrittlement in Ceramic-Matrix Composites, J. Am. Ceram. Soc., 79[9] 2345–52 (1996).

    Article  CAS  Google Scholar 

  114. K. A. Keller, T. Mah, C. Cooke, and T. A. Parthasarathy, Fugitive Interfacial Carbon Coatings for Oxide/Oxide Composites, J. Am. Ceram. Soc., 83[2] 329–36 (2000).

    CAS  Google Scholar 

  115. E. Lara-Curzio, M. Ferber, and R. A. Lowden, Effect of fiber coating thickness on the interfacial properties of a continuous fiber ceramic matrix composite, Cer. Eng. Sci. Proc., 15[5] 989–1003 (1994).

    CAS  Google Scholar 

  116. O. Sudre, A. G. Razzell, L. Molliex, and M. Holmquist, Alumina Single-Crystal Fibre Reinforced Alumina Matrix for Combustor Tiles, Ceram. Eng. Sci. Proc., 19[4] 273–280 (1998).

    Article  CAS  Google Scholar 

  117. B. Saruhan, M. Schmucker, M. Bartsch, H. Schneider, K. Nubian, and G. Wahl, Effect of interphase characteristics on long-term durability of oxide-based fibre-reinforced composites, Comp. Part A, 32 1095–1103 (2001).

    Article  Google Scholar 

  118. K. Nubian, B. Saruhan, B. Kanka, M. Schmucker, H. Schneider, and G. Wahl, Chemical vapor deposition of ZrO2 and C/ZrO2 on mullite fibers for interfaces in mullite/aluminosilicate fiber-reinforced composites, J. Eur. Ceram. Soc., 20 537–544 (2000).

    Article  CAS  Google Scholar 

  119. P. W. M. Peters, B. Daniels, F. Clemens, and W. C. Vogel, Mechanical characterization of mullite-based ceramic matrix composites at test temperatures up to 1200 C, J. Eur. Ceram. Soc., 20 531–535 (2000).

    Article  CAS  Google Scholar 

  120. K. Chyung and S. B. Dawes, Fluoromica Coated Nicalon Fiber Reinforced Glass-Ceramic Composites, Mat. Sci. Eng., A162 27–33 (1993).

    CAS  Google Scholar 

  121. G. Demazeau, New Synthetic Mica-like Materials for Controlling Fracture in Ceramic Matrix Composites, Mat. Tech., 10 43–58 (1995).

    Google Scholar 

  122. M. K. Cinibulk and R. S. Hay, Textured Magnetoplumbite Fiber-Matrix Interphase Derived from Sol-Gel Fiber Coatings, J. Am. Ceram. Soc., 79[5] 1233–1246 (1996).

    Article  CAS  Google Scholar 

  123. G. Fair, M. Shemkunas, W. T. Petuskey, and S. Sambasivan, Layered Perovskites as’ soft-ceramics’, J. Eur. Cer. Soc., 19 2437–2447 (1999).

    Article  CAS  Google Scholar 

  124. M. H. Jaskowiak, W. H. Philipp, L. C. Vetch, and J. B. Hurst, Platinum Interfacial Coatings for Sapphire/Al2O3 Composites, Cer. Eng. Sci. Proc., 13 589–598 (1992).

    Google Scholar 

  125. J. Wendorff, R. Janssen, and N. Claussen, Platinum as a Weak Interphase for Fiber-Reinforced Oxide-Matrix Composites, J. Am. Ceram. Soc., 81[10] 2738–2740 (1998).

    CAS  Google Scholar 

  126. T. A. Parthasarathy, Effect of Segregation-Induced Interface Weakening on Fiber Pullout in a Sapphire/YAG CMC, Air Force Research Laboratory, [unpublished] (1994).

    Google Scholar 

  127. M. G. Jenkins and S. S. Kohles, High-Temperature Performance and Retained Strength of an Oxide-Oxide Continuous Fiber Ceramic Composite, Ceram. Eng. Sci. Proc., 19[3] 317–325 (1998).

    CAS  Google Scholar 

  128. R. S. Hay, The Use of Solid-State Reactions with Volume Loss to Engineer Stress and Porosity into the Fiber-Matrix Interface of a Ceramic Composite, Acta Met., 43[9] 3333–3348 (1995).

    CAS  Google Scholar 

  129. Z. Chen, S. Duncan, K. K. Chawla, M. Koopman, and G. M. Janowski, Characterization of interfacial reaction products in alumina fiber/barium zirconate coating/alumina matrix composite, Mat. Char., 48 305–314 (2002).

    Article  CAS  Google Scholar 

  130. T. Mamiya, H. Kakisawa, W. H. Liu, S. J. Zhu, and Y. Kagawa, Tensile damage evolution and notch sensitivity of Al2O3 fiber-ZrO2 matrix minicomposite-reinforced Al2O3 matrix composites, Mat. Sci. Eng. A, A325 405–413 (2002).

    Article  CAS  Google Scholar 

  131. P. Chivavibul and M. Enoki, Effect of gage length on tensile strength and failure strain of woven fabric Al2O3 fiber-ZrO2 minicomposite-reinforced Al2O3 matrix composite, J. Mater. Sci. Lett., 22 495–498 (2003).

    Article  CAS  Google Scholar 

  132. L. Pejryd, R. Lundberg, and E. Butler, Ceramic Composite, Particularly for Use at Temperatures Above 1400 Degrees Celsius, U.S. Patent No. 5,567,518, Oct. 22, 1996. Volvo Aero Corporation: USA.

    Google Scholar 

  133. S. Shanmugham, D. P. Stinton, F. Rebillat, A. Bleier, T. M. Besmann, E. Lara-Curzio, and P. K. Liaw, Oxidation-Resistant Interfacial Coatings for Continuous Fiber Ceramic Composites, Cer. Eng. Sci. Proc., 16[4] 389–399 (1995).

    CAS  Google Scholar 

  134. J. L. Stempin and D. R. Wexell, Fiber Reinforced Ceramic Matrix Composites Exhibiting Improved High-Temperature Strength. U.S. Patent No. 5,422,319, June 6, 1995. Corning, Inc.: USA.

    Google Scholar 

  135. S.-K. Lau and C. H. McMurty, Aluminum Nitride-Coated Silicon Carbide Fiber. U.S. Patent No. 5,484,655, Jan. 16, 1996. The Carborundum Company: USA.

    Google Scholar 

  136. L. E. Carpenter, Single and Multilayer Coatings Containing Aluminum Nitride. U.S. Patent No. 5,183,684, Feb. 2, 1993. Dow Corning Corporation: USA.

    Google Scholar 

  137. L. C. Lev and A. S. Argon, Development of Oxide Coatings for Matching Oxide Fiber-Oxide Matrix Composites, Cer. Eng. Sci. Proc., 15[5] 743–752 (1994).

    CAS  Google Scholar 

  138. W. Y. Lee, E. Lara-Curzio, and K. L. More, Multilayered Oxide Interphase Concept for Ceramic-Matrix Composites, J. Am. Ceram. Soc., 81[3] 717–720 (1998).

    CAS  Google Scholar 

  139. M. K. Brun, R. A. Giddings, and S. Prochazka, Silicon Carbide Composite with Metal Boride Coated Fiber Reinforcement. U.S. Patent No. 5,316,851, May 31, 1994. General Electric Comp.: USA.

    Google Scholar 

  140. Oxide-Oxide CMC Data Sheets. COI Ceramics, Inc., San Diego, CA. (2003).

    Google Scholar 

  141. R. A. Jurf and S. C. Butner, Advances in all-oxide CMC, J. Eng. Gas Turbines Power, 122 202–205 (2000).

    Article  CAS  Google Scholar 

  142. E. A. V. Carelli, H. Fujita, J. Y. Yang, and F. W. Zok, Effects of thermal aging on the mechanical properties of a porous-matrix ceramic composite, J. Am. Ceram. Soc., 85[3] 595–602 (2002).

    CAS  Google Scholar 

  143. J. A. Heathcote, X. Gong, J. Y. Yang, U. Ramamurty, and F. W. Zok, In-plane mechanical properties of an all-oxide ceramic composite, J. Am. Ceram. Soc., 82[10] 2721–2730 (1999).

    CAS  Google Scholar 

  144. S. Butner and J. Pierce. Processing and properties of a Nextel 720 alumina composite fabricated by composite wet lay-up. Presented at the 26th Annual Conference on Composites, Materials, and Structures. Cocoa Beach Florida, Jan 28–Feb 1, 2002.

    Google Scholar 

  145. H. Fugita, G. Jefferson, R. M. McMeeking, and F. W. Zok, Mullite/alumina mixtures for use as porous matrices in oxide fiber composites, J. Am. Ceram. Soc., 87[2] 261–267 (2004).

    Google Scholar 

  146. G. P. Tandon, D. J. Buchanan, N. J. Pagano, and R. John, Analytical and experimental characterization of thermo-mechanical properties of a damaged woven oxide-oxide composite, Ceram. Eng. Sci. Proc., 22[3] 687–694 (2001).

    CAS  Google Scholar 

  147. A. G. Evans and F.W. Zok, The physics and mechanics of fibre-reinforced brittle matrix composites, J. Mater. Sci., 29[15] 3857–3896 (1994).

    Article  CAS  Google Scholar 

  148. J. C. McNulty and F.W. Zok, Application of weakest-link fracture statistics to fiber-reinforced ceramic-matrix composites, J. Am. Ceram. Soc., 80[6] 1535–1543 (1997).

    CAS  Google Scholar 

  149. U. Ramamurty, F. W. Zok, F. A. Leckie, and H. E. Deve, Strength variability in alumina fiber reinforced aluminum matrix composites, Acta Mater., 45[11] 4603–4613 (1997).

    Article  CAS  Google Scholar 

  150. N. A. Weil and I. M. Daniel, Analysis of fracture probabilities in nonuniformly stressed brittle materials, J. Am. Ceram. Soc., 47[6] 268–274 (1964).

    Article  CAS  Google Scholar 

  151. R. Pipes, R. Blake, J. Gillespie, and L. Carlsson, Delaware Composites Design Encyclopedia, Vol 6, Test Methods. Technomic, Lancaster, Pa (1990).

    Google Scholar 

  152. N. K. Naik and R. S. Kumar, Compressive strength of unidirectional composites: evaluation and comparison of prediction models, Compos. Struct., 46[3] 299–308 (1999).

    Article  Google Scholar 

  153. S. Y. Hsu, T. J. Volger, and S. Kyriakides, Compressive strength predictions for fiber composites, J. Appl. Mech., 65[1] 7–16 (1998).

    Google Scholar 

  154. D. M. Wilson, S. L. Lieder, and D. C. Lueneburg, Microstructure and High Temperature Properties of Nextel 720 Fibers, Ceram. Eng. Sci. Proc., 16[5] 1005–1014 (1995).

    CAS  Google Scholar 

  155. D. M. Wilson, D. C. Lueneburg, and S. L. Lieder, High Temperature Properties of Nextel 610 and Alumina-Based Nanocomposite Fibers, Ceram. Eng. Sci. Proc., 14[7–8] 609–621 (1993).

    CAS  Google Scholar 

  156. L. P. Zawada and S. S. Lee, The effect of hold times on the fatigue behavior of an oxide/oxide ceramic composite, in Thermal and Mechanical Test Methods and Behavior of Continuous-Fiber Ceramic Composites, M. G. Jenkins, et al., Eds., American Society for Testing and Materials, West Conshohocken, PA, (1997).

    Google Scholar 

  157. L. P. Zawada and S. S. Lee, Evaluation of Four CMC’s for Aerospace Turbine Engine Divergent Flaps and Seals, Ceram. Eng. and Sci. Proc., 16[4] 337–339 (1995).

    Google Scholar 

  158. R. John, D. J. Buchanan, and L. P. Zawada, Notch-sensitivity of a woven oxide/oxide ceramic matrix composite, in Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components, M. G. Jenkins, E. Lara-Curzio, and S. T. Gonczy, Eds., American Society for Testing and Materials, West Conshohocken, PA (2000). p. 172–181.

    Google Scholar 

  159. R. John, D. J. Buchanan, and L. P. Zawada, Creep deformation and rupture behavior of a notched oxide/oxide Nextel720/AS composite, Ceram. Eng. Sci. Proc., 21[3] 567–574 (2000).

    CAS  Google Scholar 

  160. W. R. Cannon and T. G. Langdon, Review creep of ceramics: part 1 mechanical characteristics, J. Mater. Sci., 18[1] 1–50 (1983).

    Article  CAS  Google Scholar 

  161. S. V. Nair and J. L. Bassani, Macro-and micromechanics of elevated temperature crack growth in ceramic composites, in High Temperature Mechanical Behavior of Ceramic Composites, S.V. Nair and K. Jakus, Eds., Butterworth-Heinemann, Boston (1995). p. 437–470.

    Google Scholar 

  162. J. R. Zuiker, A model for the creep response of oxide-oxide ceramic matrix composites, in Thermal and Mechanical Test Methods and Behavior of Continuous-Fiber Ceramic Composites, M. G. Jenkins, et al., Eds., American Society for Testing and Materials, West Conshohocken, PA, (1997).

    Google Scholar 

  163. R. M., McMeeking, Models for the creep of ceramic matrix composite materials, in High Temperature Mechanical Behavior of Ceramic Composites, S.V. Nair and K. Jakus, Eds., Butterworth-Heinemann, Boston, (1995). p. 409–436.

    Google Scholar 

  164. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity. McGraw-Hill, New York (1970).

    Google Scholar 

  165. S. C. Tan, Stress Concentrations in Laminated Composites. Technomic, Lancaster, PA (1994).

    Google Scholar 

  166. D. J. Buchanan, V. A. Kramb, R. John, and L. P. Zawada, Effect of small effusion holes on creep rupture behavior of oxide/oxide Nextel™720/AS composite, Ceram. Eng. Sci. Proc., 22[3] 659–666 (2001).

    CAS  Google Scholar 

  167. R. John, D. J. Buchanan, V. A. Kramb, and L. P. Zawada, Creep rupture behavior of oxide/oxide Nextel720/AS and MI SiC/SiC composite with effusion holes, Ceram. Eng. Sci. Proc., 23[3] 617–628 (2002).

    CAS  Google Scholar 

  168. J. M. Whitney and R. J. Nuismer, Stress fracture criteria for laminated composites containing stress concentrations, J. Compos. Mater., 8[3] 253–265 (1974).

    Google Scholar 

  169. J. C. McNulty, F. W. Zok, G. M. Genin, and A. G. Evans, Notch-sensitivity of fiber-reinforced ceramic-matrix composites: effects of inelastic straining and volume dependent strength, J. Am. Ceram. Soc., 82[5] 1217–1228 (1999).

    CAS  Google Scholar 

  170. S. G. Steel, Monotonic and Fatigue Loading Behavior of an Oxide/Oxide Ceramic Matrix Composite, Masters Thesis, Air Force Institute of Technology, Wright Patterson Air Force Base, OH. (2000).

    Google Scholar 

  171. M. Kumosa, G. Odegard, D. Armentrout, L. Kumosa, K. Searles, and J. K. Sutter, Comparison of the +/−45 tensile and Iosipescu shear tests for woven fabric composite materials, J. Compos. Technol. Res., 24[1] 3–16 (2002).

    Google Scholar 

  172. L. P. Zawada and K. E. Goecke, Testing methodology for measuring transthickness tensile strength for ceramic matrix composites, in Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components, M. G. Jenkins, E. Lara-Curzio, and S. T. Gonczy, Eds., American Society for Testing and Materials, West Conshohocken, PA (2000). p. 62–85.

    Google Scholar 

  173. G. Odegard, D. Armentrout, K. Searles, L. Kumosa, J. K. Sutter, and M. Kumosa, Failure analysis of +/−45 off-axis woven fabric composite specimens, J. Compos. Technol. Res., 23[3] 205–224 (2001).

    Google Scholar 

  174. S.W. Tsai and E. M. Wu, A general theory of strength for anisotropic materials, J. Compos. Mater., 5 58–80 (1971).

    Google Scholar 

  175. L. J. Hart-Smith, The role of biaxial stresses in discriminating between meaningful and illusory composite failure theories, Compos. Struct., 25 3–20 (1993).

    Article  Google Scholar 

  176. D. C. C. Lam and F. F. Lange, Microstructual Observations on Constrained Densification of Alumina Powder Containing a Periodic Array of Sapphire Fibers, J. Am. Ceram. Soc., 77[7] 1976–1978 (1994).

    Article  CAS  Google Scholar 

  177. M. N. Rahaman, Ceramic Processing and Sintering. 1st ed. Marcel-Dekker, Inc., New York (1995). 770.

    Google Scholar 

  178. D. B. Gundel, P. J. Taylor, and F. E. Wawner, Fabrication of Thin Oxide Coatings on Ceramic Fibres by a Sol-Gel Technique, J. Mater. Sci., 29 1795–1800 (1994).

    Article  CAS  Google Scholar 

  179. R. S. Hay and E. E. Hermes, Sol-Gel Coatings on Continuous Ceramic Fibers, Cer. Eng. Sci. Proc., 11[9–10] 1526–1532 (1990).

    CAS  Google Scholar 

  180. H. Dislich and E. Hussmann, Amorphous and Crystalline Dip Coatings Obtained from Organometallic Solutions: Procedures, Chemical Processes, and Products, Thin Solid Films, 77 129–139 (1981).

    Article  CAS  Google Scholar 

  181. P. D. Jero, F. Rebillat, D. J. Kent, and J. G. Jones, Crystallization of Lanthanum Hexaluminate from MOCVD Precursors, Ceram. Eng. Sci. Proc., 19[3] 359–360 (1998).

    CAS  Google Scholar 

  182. J. A. Haynes, K. M. Cooley, D. P. Stinton, and R. A. Lowden, Corrosion-resistant CVD mullite coatings for Si3N4, Ceram. Eng. Sci. Proc., 20[4] 355–362 (1999).

    CAS  Google Scholar 

  183. P. V. Chayka, Liquid MOCVD Precursors and Their Application to Fiber Interface Coatings, Ceram. Eng. Sci. Proc., 18[3] 287–294 (1997).

    CAS  Google Scholar 

  184. P. W. Brown, Electrophoretic Deposition of Mullite in a Continuous Fashion Utilizing Non-Aqueous Polymeric Sols, in Ceramic Transactions, Vol. 56, K. V. Logan, Editor, American Ceramic Society: Columbus, OH (1995), p. 369–376.

    Google Scholar 

  185. R. W. Rice, BN Coating of Ceramic Fibers for Ceramic Fiber Composites, U.S. Patent No. 4,642,271, Feb. 10, 1987. USA.

    Google Scholar 

  186. R. Naslain, O. Dugne, A. Guette, J. Sevely, C. R. Brosse, J. P. Rocher, and J. Cotteret, Boron Nitride Interphase in Ceramic Matrix Composites, J. Am. Cer. Soc., 74[10] 2482–2488 (1991).

    Article  CAS  Google Scholar 

  187. C. J. Griffin and R. R. Kieschke, CVD Processing of Fiber Coatings for CMCs, Cer. Eng. Sci. Proc., 16[4] 425–432 (1995).

    CAS  Google Scholar 

  188. M. H. Lewis, Interfaces in Ceramic Matrix Composites, in Carbon/Carbon, Cement and Ceramic Matrix Composites, R. Warren, Ed., Elsevier, Oxford, (2000). p. 289–322.

    Google Scholar 

  189. T. J. Illston, C. B. Ponton, P. M. Marquis, and E. G. Butler, Electrophoretic Deposition of Silica/Alumina Colloids for the Manufacture of CMC’s, Cer. Eng. Sci. Proc., 15[5] 1052–1059 (1994).

    CAS  Google Scholar 

  190. E. E. Boakye, T. Mah, C. M. Cooke, and K. A. Keller, Initial Assessment of the Weavability of Fiber Tows Coated with Monazite, J. Am. Ceram. Soc., (submitted).

    Google Scholar 

  191. R. S. Hay, M. D. Petry, K. A. Keller, M. K. Cinibulk, and J. R. Welch, Carbon and Oxide Coatings on Continuous Ceramic Fibers, in Ceramic Matrix Composites — Advanced High Temperature Structural Materials, R. A. Lowden, et al., Eds., Materials Research Society (1995). p. 377–382.

    Google Scholar 

  192. E. Boakye, R. S. Hay, and M. D. Petry, Continuous Coating of Oxide Fiber Tows Using Liquid Precursors: Monazite Coatings on Nextel 720, J. Am. Ceram. Soc., 82[9] 2321–2331 (1999).

    CAS  Google Scholar 

  193. R. S. Hay and E. E. Hermes, Coating Apparatus for Continuous Fibers, U.S. Patent No. 5,217,533, June 8, 1993. USA.

    Google Scholar 

  194. R. S. Hay, J. R. Welch, and M. K. Cinibulk, TEM Specimen Preparation and Characterization of Ceramic Coatings on Fiber Tows, Thin Solid Films, 308–309 389–392 (1997).

    Article  Google Scholar 

  195. F. F. Lange, C. G. Levi, and F. W. Zok, Processing Fiber Reinforced Ceramics with Porous Matrices, in Carbon/carbon, Cement and Ceramic Matrix Composites, R. Warren, Ed., Elsevier Science Ltd., Oxford, (2000). p. 427–447.

    Google Scholar 

  196. P. Nicholson, P. Sarkar, and X. Huang, Electrophoretic Depositon and its Use to Synthesize ZrO2/Al2O3 Micro-laminate Ceramic/Ceramic Composites, J. Mat. Sci., 29 6274–6278 (1993).

    Article  Google Scholar 

  197. A. R. Boccaccini, C. Kaya, and K. K. Chawla, Use of electrophoretic deposition in the processing of fibre reinforced ceramic and glass matrix composites: a review, Comp. Part A, 32 997–1006 (2001).

    Article  Google Scholar 

  198. S. Kooner, W. S. Westby, C. M. A. Watson, and P. M. Farries, Processing of Nextel 720/mullite composition composite using electrophoretic deposition, J. Eur. Ceram. Soc., 20 631–638 (2000).

    Article  CAS  Google Scholar 

  199. C. Kaya, X. Gu, I. A. H. Al-Dawery, and E. G. Butler, Microstructural development of woven mullite fibre-reinforced mullite ceramic matrix composites by infiltration processing, Sci. & Tech. of Adv. Mater., 3 35–44 (2002).

    Article  CAS  Google Scholar 

  200. I. A. H. Al-Dawery and E. G. Butler, Fabrication of high-temperature resistant oxide ceramic matrix composites, Comp. Part A, 32 1007–1012 (2001).

    Article  Google Scholar 

  201. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics. A Wiley Interscience Publication. John WIley & Sons, New York (1976). 1032.

    Google Scholar 

  202. H. T. Larker and R. Lundberg, Near Net Shape Production of Monolithic and Composite High Temperature Ceramics by Hot Isostatic Pressing (HIP), J. Eur. Ceram. Soc., 19 2367–2373 (1999).

    Article  CAS  Google Scholar 

  203. F. Langlais, Chemical Vapor Infiltration Processing of Ceramic Matrix Composites, in Carbon/Carbon, Cement, and Ceramic Matrix Composites, R. Warren, Ed., Elsevier, Oxford, (2000). p. 611–644.

    Google Scholar 

  204. J. J. Brennan, Interfacial Studies of Chemical-Vapor Infiltrated Ceramic Matrix Composites, Mat. Sci. Eng., A126 203–223 (1990).

    CAS  Google Scholar 

  205. M. S. Newkirk, A. W. Urquhart, H. R. Zwicker, and E. Breval, Formation of Lanxide Ceramic Composite Materials, J. Mater. Sci., [1] 81–89 (1987).

    Google Scholar 

  206. W. B. Hillig, Making Ceramic Composites by Melt Infiltration, Am. Cer. Soc. Bull., 73 56–62 (1995).

    Google Scholar 

  207. W. B. Hillig and H. C. McGuigan, An exploratory study of producing non-silicate all-oxide composites by melt infiltration, Mat. Sci. Eng., A196 183–190 (1995).

    CAS  Google Scholar 

  208. J. Wendorff, R. Janssen, and N. Claussen, Model experiments on pure oxide composites, Mat. Sci. Eng., A250 186–193 (1998).

    CAS  Google Scholar 

  209. K. A. Keller, T. Mah, E. E. Boakye, and T. A. Parthasarathy, Gel-Casting and Reaction Bonding of Oxide-Oxide Minicomposites with Monazite Interphase, Ceram. Eng. Sci. Proc., 21[3] 525–534 (2000).

    Article  CAS  Google Scholar 

  210. M. K. Cinibulk, T. A. Parthasarathy, K. A. Keller, and T. Mah, Porous yttrium aluminum garnet fiber coatings for oxide composites, J. Am. Ceram. Soc., 85[11] 2703–2710 (2002).

    CAS  Google Scholar 

  211. T. A. Parthasarathy, E. Boakye, K. A. Keller, and R. S. Hay, Evaluation of Porous Zirconia Silica and Monazite Coatings using Nextel 720 Fiber Reinforced Blackglas Minicomposites, J. Am. Ceram. Soc., 84[7] 1526–1532 (2001).

    CAS  Google Scholar 

  212. M. D. Petry and T.-I. Mah, Effect of thermal exposures on the strengths of Nextel 550 and 720 filaments, J. Am. Ceram. Soc., 82[10] 2810–2807 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Keller, K.A., Jefferson, G., Kerans, R.J. (2005). Oxide-Oxide composites. In: Bansal, N.P. (eds) Handbook of Ceramic Composites. Springer, Boston, MA . https://doi.org/10.1007/0-387-23986-3_16

Download citation

Publish with us

Policies and ethics