Skip to main content

SiC Fiber-Reinforced Celsian Composites

  • Chapter
Handbook of Ceramic Composites

Abstract

Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to ∼ 1100°C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. M. Prewo, Fiber Reinforced Glasses and Glass-Ceramics, in “Glasses and Glass-Ceramics”, M. H. Lewis, Ed., Chapman and Hall, New York, NY, 1989; pp. 336–368.

    Google Scholar 

  2. J. J. Brennan, Glass and Glass-Ceramic Matrix Composites, in “Fiber Reinforced Ceramic Composites. Materials, Processing and Technology”, K. S. Mazdiyasni, Ed., Noyes Publications, Park Ridge, NJ, 1990, pp. 222–259.

    Google Scholar 

  3. K. N. Lee, D. S. Fox, J. I. Eldridge, D. Zhu, R. C. Robinson N. P. Bansal, and R. A. Miller, Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS, NASA/TM-2002-211372, March 2002. J. Am. Ceram. Soc., 86 (2003).

    Google Scholar 

  4. H. E. Eaton, Jr., W. P. Allen, N. S. Jacobson, N. P. Bansal, E. J. Opila, J. L. Smialek, K. N. Lee, I. T. Spitsberg, H. Wang, P. J. Meschter, and K. L. Luthra, Silicon Based Substrate with Environmental/Thermal Barrier Layer, U. S. Patent 6,387,456; May 14, 2002.

    Google Scholar 

  5. N. P. Bansal, Ceramic Fiber-Reinforced Glass-Ceramic Matrix Composites, U. S. Patent 5,214,004; May 25, 1993.

    Google Scholar 

  6. N. P. Bansal, Method of Producing a Ceramic Fiber-Reinforced Glass-Ceramic Matrix Composite, U. S. Patent 5,281,559; January 25, 1994.

    Google Scholar 

  7. N. P. Bansal, Method of Producing a Silicon Carbide Fiber Reinforced Strontium Aluminosilicate Glass-Ceramic Matrix Composite, U. S. Patent #5,389,321; February 14, 1995.

    Google Scholar 

  8. N. P. Bansal, Mechanical Behavior of Silicon Carbide Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites, Mater. Sci. Eng. A, 231[1–2] 117–127 (1997).

    Google Scholar 

  9. N. P. Bansal, CVD SiC (SCS-0) Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites, J. Mater. Res., 12[3] 745–753 (1997).

    CAS  Google Scholar 

  10. N. P. Bansal, Influence of Fiber Volume Fraction on Mechanical Behavior of CVD SiC Fiber/SrAl2Si2O8 Glass-Ceramic Matrix Composites, SAMPE J. Advanced Mater., 28[1] 48–58 (1996).

    CAS  Google Scholar 

  11. N. P. Bansal, CVD SiC Fiber-Reinforced Barium Aluminosilicate Glass-Ceramic Matrix Composites, Mater. Sci. Eng. A, 220[1–2] 129–139 (1996).

    Google Scholar 

  12. N. P. Bansal, Celsian Formation in Fiber-Reinforced Barium Aluminosilicate Glass-Ceramic Matrix Composites, Mater. Sci. Eng. A, 342[1–2] 23–27 (2003).

    Google Scholar 

  13. J. S. Moya Corral and G. Verduch, The Solid Solution of Silica in Celsian, Trans. J. Br. Ceram. Soc., 77, 40–44 (1978).

    Google Scholar 

  14. D. Bahat, Kinetic Study on the Hexacelsian-Celsian Phase Transformation, J. Mater. Sci., 5, 805–810 (1970).

    Article  CAS  Google Scholar 

  15. B. Yoshiki and K. Matsumoto, High Temperature Modification of Barium Feldspar, J. Am. Ceram. Soc., 34[9], 283–286 (1951).

    Article  CAS  Google Scholar 

  16. Y. Takeuchi, A Detailed Investigation of the Structure of Hexagonal BaAl2Si2O8 With Reference to its α-beta Inversion, Min. J. Japan, 2[5], 311–332 (1958).

    CAS  Google Scholar 

  17. R. E. Newnham and H. D. MegawThe Crystal Structure of Celsian (Barium Feldspar), Acta Cryst., 13, 303–312 (1960).

    Article  CAS  Google Scholar 

  18. P. Gay, A Note on Celsian, Acta Cryst., 9, 474 (1956).

    Article  CAS  Google Scholar 

  19. M. C. Guillem and C. Guillem, Kinetics and Mechanism of Formation of Celsian from Barium Carbonate and Kaolin, Trans. J. Br. Ceram. Soc., 83, 150–154 (1984).

    CAS  Google Scholar 

  20. N. P. Bansal, Solid State Synthesis and Properties of Monoclinic Celsian, J. Mater. Sci., 33[19] 4711–4715 (1998).

    Article  CAS  Google Scholar 

  21. J. J. Buzniak, K. P. D. Lagerlof, and N. P. Bansal, Hot Pressing and High Temperature Mechanical Properties of BaAl2Si2O8 (BAS) and SrAl2Si2O8 (SAS), in Advances in Ceramic Matrix Composites (N. P. Bansal, Ed.), Am. Ceram. Soc., Westerville, OH; Ceram. Trans., 38, 789–801 (1993).

    Google Scholar 

  22. D. Zhu, N. P. Bansal, K. N. Lee, and R. A. Miller, Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials, NASA/TM-2001-211122, Sept. 2001.

    Google Scholar 

  23. N. P. Bansal and M. J. Hyatt, Crystallization Kinetics of Barium Aluminosilicate Glasses, J. Mater. Res., 4 1257 (1989).

    CAS  Google Scholar 

  24. M. J. Hyatt and N. P. Bansal, Crystal Growth Kinetics in BaOAl2O32SiO2 and SrOAl2O32SiO2 Glasses, J. Mater. Sci., 31[1] 172–184 (1996).

    Article  CAS  Google Scholar 

  25. N. P. Bansal and C. H. Drummond III, Kinetics of Hexacelsian to Monoclinic Celsian Phase Transformation in SrAl2Si2O8, J. Am. Ceram. Soc., 76[5] 1321–1324 (1993).

    Article  CAS  Google Scholar 

  26. N. P. Bansal and J. A. Setlock, Fabrication of Fiber-Reinforced Celsian Matrix Composites, Comp. Part A: Applied Science and Manufacturing, 32[8] 1021–1029 (2001).

    Article  Google Scholar 

  27. N. P. Bansal, Strong and Tough Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites, J. Am. Ceram. Soc., 80[9] 2407–2409 (1997).

    CAS  Google Scholar 

  28. G. Gouadec, P. Colomban, and N. P. Bansal, Raman Study of Hi-Nicalon Fiber-Reinforced Celsian Composites. Part 1: Distribution and Nanostructure of Different Phases, J. Am. Ceram. Soc., 84[5] 1129–1135 (2001).

    Article  CAS  Google Scholar 

  29. N. P. Bansal, P. H. McCluskey, G. D. Linsey, D. Murphy, and G. Levan, Processing and Properties of Nicalon Reinforced Barium Aluminosilicate (BAS) Glass-Ceramic Matrix Composites, in Ceramic Matrix Composites for Rocket Nozzle, Leading Edge, and Turbine Applications, Ed. M. M. Opeka, DoD Ceramics Information Analysis Center, West Lafayette, IN; pp. 335–358 (1995).

    Google Scholar 

  30. N. P. Bansal, P. H. McCluskey, G. D. Linsey, D. Murphy, and G. Levan, Nicalon Fiber-Reinforced Celsian Glass-Ceramic Composites, in “HITEMP Review 1995 — Advanced High Temperature Engine Materials Technology Program. Volume III: Turbine Materials-CMC’s, Fiber and Interface Issues”, NASA CP 10178, pp. 41-1 to 41-14 (1995).

    Google Scholar 

  31. G. D. Linsey, P. McCluskey, D. Murphy, and G. Levan, Processing and Properties of Barium Aluminosilicate Glass-Ceramic Matrix Composites, NASA CR 198369, August 1995.

    Google Scholar 

  32. S. R. Choi, N. P. Bansal, and J. P. Gyekenyesi, Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures, NASA/TM-2002-211579, June 2002.

    Google Scholar 

  33. N. P. Bansal and J. I. Eldridge, Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites: Influence of Interface Modification, J. Mater. Res., 13[6] 1530–1537 (1998).

    CAS  Google Scholar 

  34. Ö. Ünal and N. P. Bansal, Temperature Dependency of Strength of a Unidirectional SiC Fiber-Reinforced (Ba, Sr)Al2Si2O8 Celsian Composite, in Advances in Ceramic Matrix Composites IV (J. P. Singh and N. P. Bansal, Eds.), Am. Ceram. Soc., Westerville, OH; Ceram. Trans., 96, 135–147 (1999).

    Google Scholar 

  35. N. P. Bansal and J. I. Eldridge, Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi-Nicalon/Celsian Composites, NASA/TM-1999-209057, March 1999; Proc. ICCM-12 Conference, Paper No. 147, Paris, France, July 1999; ISBN 2-9514526-2-4.

    Google Scholar 

  36. J. Z. Gyekenyesi and N. P. Bansal, High Temperature Mechanical Properties of Hi-Nicalon Fiber-Reinforced Celsian Composites, in Advances in Ceramic Matrix Composites V (N. P. Bansal, J. P. Singh, and E. Ustundag Eds.), Am. Ceram. Soc., Westerville, OH; Ceram. Trans., 103, 291–306 (2000).

    Google Scholar 

  37. J. Z. Gyekenyesi and N. P. Bansal, High Temperature Tensile Properties of Unidirectional Hi-Nicalon/Celsian Composites in Air, NASA/TM-2000-210214, July 2000.

    Google Scholar 

  38. Ö. Ünal and N. P. Bansal, Interlaminar Shear Strength of a Unidirectional Fiber-Reinforced Celsian Composite by Short-Beam and Double-Notched Shear Tests, Ceram. Eng. Sci. Proc., 22[3] 585–595 (2001).

    Google Scholar 

  39. Ö. Ünal and N. P. Bansal, In-Plane and Interlaminar Shear Strength of Silicon Carbide Fiber-Reinforced Celsian Composite, Ceram. Int., 28[5] 527–540 (2002).

    Article  Google Scholar 

  40. S. R. Choi, N. P. Bansal, and J. P. Gyekenyesi, Rate Dependency of Shear Strength in SiCf/BSAS Composite at Elevated Temperature, Ceram. Eng. Sci. Proc., 24[4] 435–441 (2003).

    Article  CAS  Google Scholar 

  41. S. R. Choi, N. P. Bansal, and J. P. Gyekenyesi, Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic matrix Composite at Elevated Temperature, NASA/TM-2003-212182, April 2003.

    Google Scholar 

  42. N. P. Bansal, Mechanical Properties of SiC Fiber-Reinforced Celsian Composites After High-temperature Exposures in Air, in Proc. 8 th International Conference on Composites Engineering (ICCE-8), D. Hui, Editor, Tenerife, Spain, August 5–11 (2001); p. 59.

    Google Scholar 

  43. N. P. Bansal, Effects of Thermal Ageing in air on Microstructure and Mechanical Properties of Hi-Nicalon Fiber-Reinforced Celsian Composites, unpublished work.

    Google Scholar 

  44. N. P. Bansal, M. J. Hyatt, and C. H. Drummond III, Crystallization and Properties of Sr-Ba Aluminosilicate Glass-Ceramic Matrices, Ceram. Eng. Sci. Proc., 12[7–8] 1222–1234 (1991).

    CAS  Google Scholar 

  45. E. M. Levin and H. F. McMurdie, Phase Diagram for Ceramists, Vol. III, Fig. 4544, p. 220 (1975); The Am. Ceram. Soc., Westerville, OH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bansal, N.P. (2005). SiC Fiber-Reinforced Celsian Composites. In: Bansal, N.P. (eds) Handbook of Ceramic Composites. Springer, Boston, MA . https://doi.org/10.1007/0-387-23986-3_10

Download citation

Publish with us

Policies and ethics