Skip to main content

Cell Culture Models to Unravel Prion Protein Function and Aberrancies in TSE

  • Chapter
  • 875 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. J. Field and G. D. Windsor, Cultural Characters of Scrapie Mouse Brain. Res Vet Sci 35, 130–132 (1965).

    PubMed  Google Scholar 

  2. D. A. Haig and I. H. Pattison, In vitro growth of pieces of brain from scrapie-affected mice. J Pathol Bacteriol 93,724–727 (1967).

    PubMed  Google Scholar 

  3. E. A. Caspary and T. M. Bell, Growth potential of scrapie mouse brain in vitro. Nature 229, 269–270 (1971).

    PubMed  Google Scholar 

  4. G. M. Buening and D. P. Gustafson, Growth characteristics of scrapie agent-infected mouse brain cell cultures. Am J Vet Res 32, 953–958 (1971).

    PubMed  Google Scholar 

  5. M. C. Clarke and D. A. Haig, Evidence for the multiplication of scrapie agent in cell culture. Nature 225, 100–101. (1970).

    PubMed  Google Scholar 

  6. C. Bate, M. Salmona, L. Diomede and A. Williams, Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J Biol Chem 279, 14983–14990 (2004).

    PubMed  Google Scholar 

  7. C. R. Birkett, R. M. Hennion, D. A. Bembridge, M. C. Clarke, A. Chree, M. E. Bruce and C. J. Bostock, Scrapie strains maintain biological phenotypes on propagation in a cell line in culture. Embo J 20, 3351–3358. (2001).

    PubMed  Google Scholar 

  8. R. Race, The scrapie agent in vitro. Curr Top Microbiol Immunol 172, 181–193. (1991).

    PubMed  Google Scholar 

  9. B. Chesebro, K. Wehrly, B. Caughey, J. Nishio, D. Ernst and R. Race, Foreign PrP expression and scrapie infection in tissue culture cell lines. Dev Biol Stand 80, 131–140. (1993).

    PubMed  Google Scholar 

  10. C. J. Elleman, Attempts to establish the scrapie agent in cell lines. Vet Res Commun 8, 309–316. (1984).

    PubMed  Google Scholar 

  11. D. A. Butler, M. R. Scott, J. M. Bockman, D. R. Borchelt, A. Taraboulos, K. K. Hsiao, D. T. Kingsbury and S. B. Prusiner, Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol 62, 1558–1564. (1988).

    PubMed  Google Scholar 

  12. R. E. Race, L. H. Fadness and B. Chesebro, Characterization of scrapie infection in mouse neuroblastoma cells. J Gen Virol 68, 1391–1399. (1987).

    PubMed  Google Scholar 

  13. P. Markovits, C. Dautheville, D. Dormont, L. Dianoux and R. Latarjet, In vitro propagation of the scrapie agent. I. Transformation of mouse glia and neuroblastoma cells after infection with the mouse-adapted scrapie strain c-506. Acta Neuropathol (Berl) 60, 75–80. (1983).

    Google Scholar 

  14. P. Östlund, H. Lindegren, C. Pettersson and K. Bedecs, Up-regulation of functionally impaired insulin-like growth factor-1 receptor in scrapie-infected neuroblastoma cells. J Biol Chem 276, 36110–36115. (2001).

    PubMed  Google Scholar 

  15. N. Nishida, D. A. Harris, D. Vilette, H. Laude, Y. Frobert, J. Grassi, D. Casanova, O. Milhavet and S. Lehmann, Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J Virol 74, 320–325. (2000).

    PubMed  Google Scholar 

  16. A. Arjona, L. Simarro, F. Islinger, N. Nishida and L. Manuelidis, Two Creutzfeldt-Jakob disease agents reproduce prion protein-independent identities in cell cultures. Proc Natl Acad Sci USA 101, 8768–8773 (2004).

    PubMed  Google Scholar 

  17. A. Ladogana, Q. Liu, Y. G. Xi and M. Pocchiari, Proteinase-resistant protein in human neuroblastoma cells infected with brain material from Creutzfeldt-Jakob patient. Lancet 345, 594–595. (1995).

    Google Scholar 

  18. H. M. Schätzl, L. Laszlo, D. M. Holtzman, J. Tatzelt, S. J. DeArmond, R. I. Weiner, W. C. Mobley and S. B. Prusiner, A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71, 8821–8831. (1997).

    PubMed  Google Scholar 

  19. O. Milhavet, H. E. McMahon, W. Rachidi, N. Nishida, S. Katamine, A. Mange, M. Arlotto, D. Casanova, J. Riondel, A. Favier and S. Lehmann, Prion infection impairs the cellular response to oxidative stress. Proc Natl Acad Sci USA 97, 13937–13942. (2000).

    PubMed  Google Scholar 

  20. R. Rubenstein, R. I. Carp and S. M. Callahan, In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J Gen Virol 65, 2191–2198. (1984).

    PubMed  Google Scholar 

  21. R. Rubenstein, H. Deng, R. E. Race, W. Ju, C. L. Scalici, M. C. Papini, R. J. Kascsak and R. I. Carp, Demonstration of scrapie strain diversity in infected PC12 cells. J Gen Virol 73, 3027–3031. (1992).

    PubMed  Google Scholar 

  22. J. Follet, C. Lemaire-Vieille, F. Blanquet-Grossard, V. Podevin-Dimster, S. Lehmann, J. P. Chauvin, J. P. Decavel, R. Varea, J. Grassi, M. Fontes and J. Y. Cesbron, PrP expression and replication by Schwann cells: implications in prion spreading. J Virol 76, 2434–2439. (2002).

    PubMed  Google Scholar 

  23. F. Archer, C. Bachelin, O. Andreoletti, N. Besnard, G. Perrot, C. Langevin, A. Le Dur, D. Vilette, A. Baron-Van Evercooren, J. L. Vilotte and H. Laude, Cultured peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol 78, 482–490 (2004).

    PubMed  Google Scholar 

  24. A. Taraboulos, D. Serban and S. B. Prusiner, Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J Cell Biol 110, 2117–2132. (1990).

    PubMed  Google Scholar 

  25. V. M. Roikhel, G. I. Fokina, V. M. Lisak, L. I. Kondakova, M. B. Korolev and V. V. Pogodina, Persistence of the scrapie agent in glial cells from rat Gasserian ganglion. Acta Virol 31, 36–42. (1987).

    PubMed  Google Scholar 

  26. D. A. Haig and M. C. Clarke, Multiplication of the scrapie agent. Nature 234, 106–107. (1971).

    PubMed  Google Scholar 

  27. M. C. Clarke and G. C. Millson, Infection of a cell line of mouse L fibroblasts with scrapie agent. Nature 261, 144–145. (1976).

    PubMed  Google Scholar 

  28. N. Cherednichenko Yu, G. R. Mikhailova, J. Rajcani and V. M. Zhdanov, In vitro studies with the scrapie agent. Acta Virol 29, 285–293. (1985).

    PubMed  Google Scholar 

  29. I. Vorberg, A. Raines, B. Story and S. A. Priola, Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J Infect Dis 189, 431–439 (2004).

    PubMed  Google Scholar 

  30. D. Vilette, O. Andreoletti, F. Archer, M. F. Madelaine, J. L. Vilotte, S. Lehmann and H. Laude, Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci USA 98, 4055–4059. (2001).

    PubMed  Google Scholar 

  31. E. Sabuncu, S. Petit, A. Le Dur, T. Lan Lai, J. L. Vilotte, H. Laude and D. Vilette, PrP Polymorphisms Tightly Control Sheep Prion Replication in Cultured Cells. J Virol 77, 2696–2700. (2003).

    PubMed  Google Scholar 

  32. R. J. Klebe and F. H. Ruddle, Neuroblastoma: Cell culture analysis of a differentiating stem cell system. J Cell Biol 43, (1969).

    Google Scholar 

  33. R. T. Yanagihara, D. M. Asher, C. J. Gibbs, Jr. and D. C. Gajdusek, Attempts to establish cell cultures infected with the viruses of subacute spongiform encephalopathies. Proc Soc Exp Biol Med 165, 298–305 (1980).

    PubMed  Google Scholar 

  34. P. L. Mellon, J. J. Windle, P. C. Goldsmith, C. A. Padula, J. L. Roberts and R. I. Weiner, Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5, 1–10 (1990).

    PubMed  Google Scholar 

  35. P. J. Bosque and S. B. Prusiner, Cultured cell sublines highly susceptible to prion infection. J Virol 74, 4377–4386. (2000).

    PubMed  Google Scholar 

  36. R. E. Race, B. Caughey, K. Graham, D. Ernst and B. Chesebro, Analyses of frequency of infection, specific infectivity, and prion protein biosynthesis in scrapie-infected neuroblastoma cell clones. J Virol 62, 2845–2849. (1988).

    PubMed  Google Scholar 

  37. D. R. Borchelt, M. Scott, A. Taraboulos, N. Stahl and S. B. Prusiner, Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol 110, 743–752. (1990).

    PubMed  Google Scholar 

  38. B. Caughey and G. J. Raymond, The scrapie-associated form of PrP is made from a cell surface precursor that is both protease-and phospholipase-sensitive. J Biol Chem 266, 18217–18223. (1991).

    PubMed  Google Scholar 

  39. A. Gorodinsky and D. A. Harris, Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol 129, 619–627. (1995).

    PubMed  Google Scholar 

  40. A. Taraboulos, M. Scott, A. Semenov, D. Avrahami, L. Laszlo, S. B. Prusiner and D. Avraham, Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129, 121–132. (1995).

    PubMed  Google Scholar 

  41. B. Caughey and R. E. Race, Potent inhibition of scrapie-associated PrP accumulation by congo red. J Neurochem 59, 768–771. (1992).

    PubMed  Google Scholar 

  42. K. F. Winklhofer and J. Tatzelt, Cationic lipopolyamines induce degradation of PrPSc in scrapie-infected mouse neuroblastoma cells. Biol Chem 381, 463–469. (2000).

    PubMed  Google Scholar 

  43. A. Mange, N. Nishida, O. Milhavet, H. E. McMahon, D. Casanova and S. Lehmann, Amphotericin B inhibits the generation of the scrapie isoform of the prion protein in infected cultures. J Virol 74, 3135–3140. (2000).

    PubMed  Google Scholar 

  44. C. Korth, B. C. May, F. E. Cohen and S. B. Prusiner, Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci USA 98, 9836–9841. (2001).

    PubMed  Google Scholar 

  45. S. Supattapone, K. Nishina and J. R. Rees, Pharmacological approaches to prion research. Biochem Pharmacol 63, 1383–1388. (2002).

    PubMed  Google Scholar 

  46. S. B. Prusiner, Prions. Proc Natl Acad Sci USA 95, 13363–13383. (1998).

    Article  PubMed  Google Scholar 

  47. D. C. Bolton, M. P. McKinley and S. B. Prusiner, Molecular characteristics of the major scrapie prion protein. Biochemistry 23, 5898–5906. (1984).

    PubMed  Google Scholar 

  48. B. Caughey, K. Neary, R. Buller, D. Ernst, L. L. Perry, B. Chesebro and R. E. Race, Normal and scrapie-associated forms of prion protein differ in their sensitivities to phospholipase and proteases in intact neuroblastoma cells. J Virol 64, 1093–1101. (1990).

    PubMed  Google Scholar 

  49. C. Korth, P. Streit and B. Oesch, Monoclonal antibodies specific for the native, disease-associated isoform of the prion protein. Methods Enzymol 309, 106–122. (1999).

    PubMed  Google Scholar 

  50. E. Paramithiotis, M. Pinard, T. Lawton, S. LaBoissiere, V. L. Leathers, W. Q. Zou, L. A. Estey, J. Lamontagne, M. T. Lehto, L. H. Kondejewski, G. P. Francoeur, M. Papadopoulos, A. Haghighat, S. J. Spatz, M. Head, R. Will, J. Ironside, K. O’Rourke, Q. Tonelli, H. C. Ledebur, A. Chakrabartty and N. R. Cashman, A prion protein epitope selective for the pathologically misfolded conformation. Nat Med 9, 893–899 (2003).

    PubMed  Google Scholar 

  51. L. Manuelidis, T. Sklaviadis and E. E. Manuelidis, Evidence suggesting that PrP is not the infectious agent in Creutzfeldt-Jakob disease. EMBO J 6, 341–347. (1987).

    PubMed  Google Scholar 

  52. Y. G. Xi, L. Ingrosso, A. Ladogana, C. Masullo and M. Pocchiari, Amphotericin B treatment dissociates in vivo replication of the scrapie agent from PrP accumulation. Nature 356, 598–601. (1992).

    PubMed  Google Scholar 

  53. K. K. Hsiao, D. Groth, M. Scott, S. L. Yang, H. Serban, D. Rapp, D. Foster, M. Torchia, S. J. Dearmond and S. B. Prusiner, Serial transmission in rodents of neu-rodegeneration from transgenic mice expressing mutant prion protein. Proc Natl Acad Sci USA 91, 9126–9130. (1994).

    PubMed  Google Scholar 

  54. C. I. Lasmezas, J. P. Deslys, O. Robain, A. Jaegly, V. Beringue, J. M. Peyrin, J. G. Fournier, J. J. Hauw, J. Rossier and D. Dormont, Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275, 402–405. (1997).

    PubMed  Google Scholar 

  55. S. Tzaban, G. Friedlander, O. Schonberger, L. Horonchik, Y. Yedidia, G. Shaked, R. Gabizon and A. Taraboulos, Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry 41, 12868–12875. (2002).

    PubMed  Google Scholar 

  56. A. F. Hill, M. Antoniou and J. Collinge, Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 80, 11–14. (1999).

    PubMed  Google Scholar 

  57. G. M. Shaked, G. Fridlander, Z. Meiner, A. Taraboulos and R. Gabizon, Protease-resistant and detergent-insoluble prion protein is not necessarily associated with prion infectivity. J Biol Chem 274, 17981–17986. (1999).

    PubMed  Google Scholar 

  58. R. K. Meyer, M. P. McKinley, K. A. Bowman, M. B. Braunfeld, R. A. Barry and S. B. Prusiner, Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci USA 83, 2310–2314. (1986).

    PubMed  Google Scholar 

  59. K. F. Winklhofer, F. U. Hartl and J. Tatzelt, A sensitive filter retention assay for the detection of PrP(Sc) and the screening of anti-prion compounds. FEBS Lett 503, 41–45. (2001).

    PubMed  Google Scholar 

  60. D. Serban, A. Taraboulos, S. J. DeArmond and S. B. Prusiner, Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology 40, 110–117. (1990).

    PubMed  Google Scholar 

  61. D. Peretz, R. A. Williamson, Y. Matsunaga, H. Serban, C. Pinilla, R. B. Bastidas, R. Rozenshteyn, T. L. James, R. A. Houghten, F. E. Cohen, S. B. Prusiner and D. R. Burton, A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol 273, 614–622. (1997).

    PubMed  Google Scholar 

  62. A. Taraboulos, M. Scott, A. Semenov, D. Avrahami and S. B. Prusiner, Biosynthesis of the prion proteins in scrapie-infected cells in culture. Braz J Med Biol Res 27, 303–307 (1994).

    PubMed  Google Scholar 

  63. B. Caughey, G. J. Raymond, D. Ernst and R. E. Race, N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65, 6597–6603. (1991).

    PubMed  Google Scholar 

  64. S. L. Shyng, M. T. Huber and D. A. Harris, A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem 268, 15922–15928. (1993).

    PubMed  Google Scholar 

  65. C. Kurschner and J. I. Morgan, The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system. Brain Res Mol Brain Res 30, 165–168 (1995).

    PubMed  Google Scholar 

  66. C. Kurschner and J. I. Morgan, Analysis of interaction sites in homo-and heteromeric complexes containing Bcl-2 family members and the cellular prion protein. Brain Res Mol Brain Res 37, 249–258 (1996).

    PubMed  Google Scholar 

  67. F. Edenhofer, R. Rieger, M. Famulok, W. Wendler, S. Weiss and E. L. Winnacker, Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J Virol 70, 4724–4728 (1996).

    PubMed  Google Scholar 

  68. R. Rieger, F. Edenhofer, C. I. Lasmezas and S. Weiss, The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 3, 1383–1388 (1997).

    PubMed  Google Scholar 

  69. C. Spielhaupter and H. M. Schätzl, PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 276, 44604–44612 (2001).

    PubMed  Google Scholar 

  70. F. Yehiely, P. Bamborough, M. Da Costa, B. J. Perry, G. Thinakaran, F. E. Cohen, G. A. Carlson and S. B. Prusiner, Identification of candidate proteins binding to prion protein. Neurobiol Dis 3, 339–355 (1997).

    PubMed  Google Scholar 

  71. S. Gauczynski, J. M. Peyrin, S. Haik, C. Leucht, C. Hundt, R. Rieger, S. Krasemann, J. P. Deslys, D. Dormont, C. I. Lasmezas and S. Weiss, The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20, 5863–5875 (2001).

    PubMed  Google Scholar 

  72. C. Hundt, J. M. Peyrin, S. Haik, S. Gauczynski, C. Leucht, R. Rieger, M. L. Riley, J. P. Deslys, D. Dormont, C. I. Lasmezas and S. Weiss, Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J 20, 5876–5886 (2001).

    PubMed  Google Scholar 

  73. C. Leucht, S. Simoneau, C. Rey, K. Vana, R. Rieger, C. I. Lasmezas and S. Weiss, The 37 kDa/67 kDa laminin receptor is required for PrP(Sc) propagation in scrapie-infected neuronal cells. EMBO Rep 4, 290–295 (2003).

    PubMed  Google Scholar 

  74. S. Chen, A. Mange, L. Dong, S. Lehmann and M. Schachner, Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci 22, 227–233 (2003).

    PubMed  Google Scholar 

  75. S. M. Zanata, M. H. Lopes, A. F. Mercadante, G. N. Hajj, L. B. Chiarini, R. Nomizo, A. R. Freitas, A. L. Cabral, K. S. Lee, M. A. Juliano, E. de Oliveira, S. G. Jachieri, A. Burlingame, L. Huang, R. Linden, R. R. Brentani and V. R. Martins, Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21, 3307–3316 (2002).

    PubMed  Google Scholar 

  76. G. I. Keshet, O. Bar-Peled, D. Yaffe, U. Nudel and R. Gabizon, The cellular prion protein colocalizes with the dystroglycan complex in the brain. J Neurochem 75, 1889–1897 (2000).

    PubMed  Google Scholar 

  77. G. Schmitt-Ulms, G. Legname, M. A. Baldwin, H. L. Ball, N. Bradon, P. J. Bosque, K. L. Crossin, G. M. Edelman, S. J. DeArmond, F. E. Cohen and S. B. Prusiner, Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314, 1209–1225 (2001).

    PubMed  Google Scholar 

  78. J. Diaz-Nido, F. Wandosell and J. Avila, Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 23, 1323–1332 (2002).

    Article  PubMed  Google Scholar 

  79. R. Gabizon, Z. Meiner, M. Halimi and S. A. Ben-Sasson, Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. J Cell Physiol 157, 319–325 (1993).

    PubMed  Google Scholar 

  80. R. G. Warner, C. Hundt, S. Weiss and J. E. Turnbull, Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 277, 18421–18430 (2002).

    PubMed  Google Scholar 

  81. B. Caughey, K. Brown, G. J. Raymond, G. E. Katzenstein and W. Thresher, Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red [corrected]. J Virol 68, 2135–2141 (1994).

    PubMed  Google Scholar 

  82. T. Pan, B. S. Wong, T. Liu, R. Li, R. B. Petersen and M. S. Sy, Cell-surface prion protein interacts with glycosaminoglycans. Biochem J 368, 81–90 (2002).

    PubMed  Google Scholar 

  83. R. Gonzalez-Iglesias, M. A. Pajares, C. Ocal, J. C. Espinosa, B. Oesch and M. Gasset, Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges. J Mol Biol 319, 527–540 (2002).

    PubMed  Google Scholar 

  84. O. Schonberger, L. Horonchik, R. Gabizon, D. Papy-Garcia, D. Barritault and A. Taraboulos, Novel heparan mimetics potently inhibit the scrapie prion protein and its endocytosis. Biochem Biophys Res Commun 312, 473–479 (2003).

    PubMed  Google Scholar 

  85. K. T. Adjou, S. Simoneau, N. Sales, F. Lamoury, D. Dormont, D. Papy-Garcia, D. Barritault, J. P. Deslys and C. I. Lasmezas, A novel generation of heparan sulfate mimetics for the treatment of prion diseases. J Gen Virol 84, 2595–2603 (2003).

    PubMed  Google Scholar 

  86. B. Caughey and G. J. Raymond, Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67, 643–650 (1993).

    PubMed  Google Scholar 

  87. D. B. Brimacombe, A. D. Bennett, F. S. Wusteman, A. C. Gill, J. C. Dann and C. J. Bostock, Characterization and polyanion-binding properties of purified recombinant prion protein. Biochem J 342 Pt 3, 605–613 (1999).

    PubMed  Google Scholar 

  88. A. Ladogana, P. Casaccia, L. Ingrosso, M. Cibati, M. Salvatore, Y. G. Xi, C. Masullo and M. Pocchiari, Sulphate polyanions prolong the incubation period of scrapie-infected hamsters. J Gen Virol 73, 661–665 (1992).

    PubMed  Google Scholar 

  89. B. Ehlers and H. Diringer, Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J Gen Virol 65, 1325–1330 (1984).

    PubMed  Google Scholar 

  90. A. D. Snow, R. Kisilevsky, J. Willmer, S. B. Prusiner and S. J. DeArmond, Sulfated glycosaminoglycans in amyloid plaques of prion diseases. Acta Neuropathol (Berl) 77, 337–342 (1989).

    Google Scholar 

  91. P. A. McBride, M. I. Wilson, P. Eikelenboom, A. Tunstall and M. E. Bruce, Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice. Exp Neurol 149, 441–454 (1998).

    Google Scholar 

  92. S. L. Shyng, S. Lehmann, K. L. Moulder and D. A. Harris, Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J Biol Chem 270, 30221–30229 (1995).

    PubMed  Google Scholar 

  93. O. Ben-Zaken, S. Tzaban, Y. Tal, L. Horonchik, J. D. Esko, I. Vlodavsky and A. Taraboulos, Cellular heparan sulfate participates in the metabolism of prions. J Biol Chem 278, 40041–40049 (2003).

    PubMed  Google Scholar 

  94. H. Bueler, M. Fischer, Y. Lang, H. Bluethmann, H. P. Lipp, S. J. DeArmond, S. B. Prusiner, M. Aguet and C. Weissmann, Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  PubMed  Google Scholar 

  95. J. C. Manson, A. R. Clarke, M. L. Hooper, L. Aitchison, I. McConnell and J. Hope, 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8, 121–127 (1994).

    PubMed  Google Scholar 

  96. H. P. Lipp, M. Stagliar-Bozicevic, M. Fischer and D. P. Wolfer, A 2-year longitudinal study of swimming navigation in mice devoid of the prion protein: no evidence for neurological anomalies or spatial learning impairments. Behav Brain Res 95, 47–54 (1998).

    PubMed  Google Scholar 

  97. I. Tobler, S. E. Gaus, T. Deboer, P. Achermann, M. Fischer, T. Rulicke, M. Moser, B. Oesch, P. A. McBride and J. C. Manson, Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380, 639–642 (1996).

    PubMed  Google Scholar 

  98. I. Tobler, T. Deboer and M. Fischer, Sleep and sleep regulation in normal and prion protein-deficient mice. J Neurosci 17, 1869–1879 (1997).

    PubMed  Google Scholar 

  99. J. Collinge, M. A. Whittington, K. C. Sidle, C. J. Smith, M. S. Palmer, A. R. Clarke and J. G. Jefferys, Prion protein is necessary for normal synaptic function. Nature 370, 295–297 (1994).

    PubMed  Google Scholar 

  100. P. M. Lledo, P. Tremblay, S. J. DeArmond, S. B. Prusiner and R. A. Nicoll, Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc Natl Acad Sci USA 93, 2403–2407 (1996).

    PubMed  Google Scholar 

  101. J. W. Herms, H. A. Kretzchmar, S. Titz and B. U. Keller, Patch-clamp analysis of synaptic transmission to cerebellar purkinje cells of prion protein knockout mice. Eur J Neurosci 7, 2508–2512 (1995).

    PubMed  Google Scholar 

  102. D. R. Brown, R. S. Nicholas and L. Canevari, Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res 67, 211–224 (2002).

    PubMed  Google Scholar 

  103. S. Sakaguchi, S. Katamine, N. Nishida, R. Moriuchi, K. Shigematsu, T. Sugimoto, A. Nakatani, Y. Kataoka, T. Houtani, S. Shirabe, H. Okada, S. Hasegawa, T. Miyamoto and T. Noda, Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528–531 (1996).

    PubMed  Google Scholar 

  104. R. Moore, Gene targeting studies at the mouse prion protein locus. PhD thesis, University of Edinburgh, Edinburgh, Scotland (1997).

    Google Scholar 

  105. C. Weissmann and A. Aguzzi, Perspectives: neurobiology. PrP’s double causes trouble. Science 286, 914–915 (1999).

    PubMed  Google Scholar 

  106. R. C. Moore, I. Y. Lee, G. L. Silverman, P. M. Harrison, R. Strome, C. Heinrich, A. Karunaratne, S. H. Pasternak, M. A. Chishti, Y. Liang, P. Mastrangelo, K. Wang, A. F. Smit, S. Katamine, G. A. Carlson, F. E. Cohen, S. B. Prusiner, D. W. Melton, P. Tremblay, L. E. Hood and D. Westaway, Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol 292, 797–817 (1999).

    Article  PubMed  Google Scholar 

  107. G. L. Silverman, K. Qin, R. C. Moore, Y. Yang, P. Mastrangelo, P. Tremblay, S. B. Prusiner, F. E. Cohen and D. Westaway, Doppel is an N-glycosylated, glycosylphosphatidylinositol-anchored protein. Expression in testis and ectopic production in the brains of Prnp(0/0) mice predisposed to Purkinje cell loss. J Biol Chem 275, 26834–26841 (2000).

    PubMed  Google Scholar 

  108. D. Rossi, A. Cozzio, E. Flechsig, M. A. Klein, T. Rulicke, A. Aguzzi and C. Weissmann, Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J 20, 694–702 (2001).

    PubMed  Google Scholar 

  109. A. Li, S. Sakaguchi, R. Atarashi, B. C. Roy, R. Nakaoke, K. Arima, N. Okimura, J. Kopacek and K. Shigematsu, Identification of a novel gene encoding a PrP-like protein expressed as chimeric transcripts fused to PrP exon 1/2 in ataxic mouse line with a disrupted PrP gene. Cell Mol Neurobiol 20, 553–567 (2000).

    Article  PubMed  Google Scholar 

  110. P. Tremblay, Z. Meiner, M. Galou, C. Heinrich, C. Petromilli, T. Lisse, J. Cayetano, M. Torchia, W. Mobley, H. Bujard, S. J. DeArmond and S. B. Prusiner, Doxycycline control of prion protein transgene expression modulates prion disease in mice. Proc Natl Acad Sci USA 95, 12580–12585 (1998).

    PubMed  Google Scholar 

  111. G. R. Mallucci, S. Ratte, E. A. Asante, J. Linehan, I. Gowland, J. G. Jefferys and J. Collinge, Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21, 202–210 (2002).

    PubMed  Google Scholar 

  112. J. H. Viles, F. E. Cohen, S. B. Prusiner, D. B. Goodin, P. E. Wright and H. J. Dyson, Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci USA 96, 2042–2047 (1999).

    PubMed  Google Scholar 

  113. E. Aronoff-Spencer, C. S. Burns, N. I. Avdievich, G. J. Gerfen, J. Peisach, W. E. Antholine, H. L. Ball, F. E. Cohen, S. B. Prusiner and G. L. Millhauser, Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39, 13760–13771 (2000).

    PubMed  Google Scholar 

  114. C. S. Burns, E. Aronoff-Spencer, G. Legname, S. B. Prusiner, W. E. Antholine, G. J. Gerfen, J. Peisach and G. L. Millhauser, Copper coordination in the full-length, recombinant prion protein. Biochemistry 42, 6794–6803 (2003).

    PubMed  Google Scholar 

  115. G. S. Jackson, I. Murray, L. L. Hosszu, N. Gibbs, J. P. Waltho, A. R. Clarke and J. Collinge, Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci USA 98, 8531–8535 (2001).

    PubMed  Google Scholar 

  116. K. Qin, Y. Yang, P. Mastrangelo and D. Westaway, Mapping Cu(ll) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting. J Biol Chem 277, 1981–1990 (2002).

    PubMed  Google Scholar 

  117. R. P. Bonomo, G. Imperllizzeri, G. Pappalardo, E. Rizzarelli and G. Tabbi, Copper(ll) binding modes in the prion octapeptide PHGGGWGQ: a spectroscopic and voltammetric study. Chemistry 6, 4195–4202 (2000).

    PubMed  Google Scholar 

  118. J. Stöckel, J. Safar, A. C. Wallace, F. E. Cohen and S. B. Prusiner, Prion protein selectively binds copper(ll) ions. Biochemistry 37, 7185–7193 (1998).

    PubMed  Google Scholar 

  119. M. P. Hornshaw, J. R. McDermott, J. M. Candy and J. H. Lakey Copperbindingtothe N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun 214, 993–999 (1995).

    PubMed  Google Scholar 

  120. D. R. Brown, K. Qin, J. W. Herms, A. Madlung, J. Manson, R. Strome, P. E. Fraser, T. Kruck, A. von Bohlen, W. Schulz-Schaeffer, A. Giese, D. Westaway and H. Kretzschmar, The cellular prion protein binds copper in vivo. Nature 390, 684–687. (1997).

    PubMed  Google Scholar 

  121. M. L. Kramer, H. D. Kratzin, B. Schmidt, A. Romer, O. Windl, S. Liemann, S. Hornemann and H. Kretzschmar, Prion protein binds copper within the physiological concentration range. J Biol Chem 276, 16711–16719 (2001).

    PubMed  Google Scholar 

  122. C. E. Jones, S. R. Abdelraheim, D. R. Brown and J. H. Viles, Preferential copper2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J Biol Chem (2004).

    Google Scholar 

  123. P. C. Pauly and D. A. Harris, Copper stimulates endocytosis of the prion protein. J Biol Chem 273, 33107–33110. (1998).

    PubMed  Google Scholar 

  124. W. S. Perera and N. M. Hooper, Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr Biol 11, 519–523 (2001).

    PubMed  Google Scholar 

  125. K. S. Lee, A. C. Magalhaes, S. M. Zanata, R. R. Brentani, V. R. Martins and M. A. Prado, Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. J Neurochem 79, 79–87 (2001).

    PubMed  Google Scholar 

  126. M. Nunziante, S. Gilch and H. M. Schätzl, Essential Role of the Prion Protein N Terminus in Subcellular Trafficking and Half-life of Cellular Prion Protein. J Biol Chem 278, 3726–3734 (2003).

    PubMed  Google Scholar 

  127. F. Klamt, F Dal-Pizzol, M. J. Conte da Frota, R. Walz, M. E. Andrades, E. G. da Silva, R. R. Brentani, I. Izquierdo and J. C. Fonseca Moreira, Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med 30, 1137–1144 (2001).

    PubMed  Google Scholar 

  128. D. R. Brown, W. J. Schulz-Schaeffer, B. Schmidt and H. A. Kretzschmar, Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 146, 104–112 (1997).

    PubMed  Google Scholar 

  129. D. J. Waggoner, B. Drisaldi, T. B. Bartnikas, R. L. Casareno, J. R. Prohaska, J. D. Gitlin and D. A. Harris, Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J Biol Chem 275, 7455–7458 (2000).

    PubMed  Google Scholar 

  130. D. R. Brown, Prion protein expression modulates neuronal copper content. J Neurochem 87, 377–385 (2003).

    PubMed  Google Scholar 

  131. A. Sakudo, D. C. Lee, K. Saeki, Y. Nakamura, K. Inoue, Y. Matsumoto, S. Itohara and T. Onodera, Impairment of superoxide dismutase activation by N-terminally truncated prion protein (PrP) in PrP-deficient neuronal cell line. Biochem Biophys Res Commun 308, 660–667 (2003).

    PubMed  Google Scholar 

  132. G. Hutter, F. L. Heppner and A. Aguzzi, No superoxide dismutase activity of cellular prion protein in vivo. Biol Chem 384, 1279–1285 (2003).

    PubMed  Google Scholar 

  133. D. R. Brown, B. S. Wong, F. Hafiz, C. Clive, S. J. Haswell and I. M. Jones, Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344 Pt 1, 1–5 (1999).

    PubMed  Google Scholar 

  134. B. S. Wong, T. Pan, T. Liu, R. Li, P. Gambetti and M. S. Sy, Differential contribution of superoxide dismutase activity by prion protein in vivo. Biochem Biophys Res Commun 273, 136–139 (2000).

    PubMed  Google Scholar 

  135. E. Graner, A. F. Mercadante, S. M. Zanata, O. V. Forlenza, A. L. Cabral, S. S. Veiga, M. A. Juliano, R. Roesler, R. Walz, A. Minetti, I. Izquierdo, V. R. Martins and R. R. Brentani, Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 76, 85–92 (2000).

    PubMed  Google Scholar 

  136. E. Graner, A. F. Mercadante, S. M. Zanata, V. R. Martins, D. G. Jay and R. R. Brentani, Laminin-induced PC-12 cell differentiation is inhibited following laser inactivation of cellular prion protein. FEBS Lett 482, 257–260 (2000).

    PubMed  Google Scholar 

  137. C. Monnet, V. Marthiens, H. Enslen, Y. Frobert, A. Sobel and R. M. Mege, Heterogeneity and regulation of cellular prion protein glycoforms in neuronal cell lines. Eur J Neurosci 18, 542–548 (2003).

    PubMed  Google Scholar 

  138. C. Kuwahara, A. M. Takeuchi, T. Nishimura, K. Haraguchi, A. Kubosaki, Y. Matsumoto, K. Saeki, T. Yokoyama, S. Itohara and T. Onodera, Prions prevent neuronal cell-line death. Nature 400, 225–226 (1999).

    PubMed  Google Scholar 

  139. Y. Bounhar, Y. Zhang, C. G. Goodyer and A. LeBlanc, Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 276, 39145–39149 (2001).

    PubMed  Google Scholar 

  140. L. B. Chiarini, A. R. Freitas, S. M. Zanata, R. R. Brentani, V. R. Martins and R. Linden, Cellular prion protein transduces neuroprotective signals. EMBO J 21, 3317–3326 (2002).

    PubMed  Google Scholar 

  141. M. Diarra-Mehrpour, S. Arrabal, A. Jalil, X. Pinson, C. Gaudin, G. Pietu, A. Pitaval, H. Ripoche, M. Eloit, D. Dormont and S. Chouaib, Prion protein prevents human breast carcinoma cell line from tumor necrosis factor alpha-induced cell death. Cancer Res 64, 719–727 (2004).

    PubMed  Google Scholar 

  142. B. H. Kim, H. G. Lee, J. K. Choi, J. I. Kim, E. K. Choi, R. I. Carp and Y S. Kim, The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Brain Res Mol Brain Res 124, 40–50 (2004).

    PubMed  Google Scholar 

  143. E. Paitel, R. Fahraeus and F. Checler, Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-dependent caspase 3-like activation. J Biol Chem 278, 10061–10066 (2003).

    PubMed  Google Scholar 

  144. E. Paitel, C. Sunyach, C. Alves da Costa, J. C. Bourdon, B. Vincent and F. Checler, Primary cultured neurons devoid of cellular prion display lower responsiveness to staurosporine through the control of p53 at both transcriptional and post-transcriptional levels. J Biol Chem 279, 612–618 (2004).

    PubMed  Google Scholar 

  145. S. Mouillet-Richard, M. Ermonval, C. Chebassier, J. L. Laplanche, S. Lehmann, J. M. Launay and O. Kellermann, Signal transduction through prion protein. Science 289, 1925–1928. (2000).

    PubMed  Google Scholar 

  146. L. Solforosi, J. R. Criado, D. B. McGavern, S. Wirz, M. Sanchez-Alavez, S. Sugama, L. A. DeGiorgio, B. T. Volpe, E. Wiseman, G. Abalos, E. Masliah, D. Gilden, M. B. Oldstone, B. Conti and R. A. Williamson, Cross-Iinking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004).

    PubMed  Google Scholar 

  147. B. Schneider, V. Mutel, M. Pietri, M. Ermonval, S. Mouillet-Richard and O. Kellermann, NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 100, 13326–13331 (2003).

    PubMed  Google Scholar 

  148. E. Morel, S. Fouquet, D. Chateau, L. Yvernault, Y. Frobert, M. Pincon-Raymond, J. Chambaz, T. Pillot and M. Rousset, The cellular prion protein PrPc is expressed in human enterocytes in cell-cell junctional domains. J Biol Chem 279, 1499–1505 (2004).

    PubMed  Google Scholar 

  149. V. Mattei, T. Garofalo, R. Misasi, A. Circella, V. Manganelli, G. Lucania, A. Pavan and M. Sorice, Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Lett 560, 14–18 (2004).

    PubMed  Google Scholar 

  150. A. Ertmer, S. Gilch, S. W. Yun, E. Flechsig, B. Klebl, M. Stein-Gerlach, M. A. Klein and H. M. Schätzl, Thetyrosine kinase inhibitor STI571 induces cellularclearance of PrPSc in prion-infected cells. J Biol Chem (2004).

    Google Scholar 

  151. S. Prioni, N. Loberto, A. Prinetti, V. Chigorno, F. Guzzi, R. Maggi, M. Parenti and S. Sonnino, Sphingolipid metabolism and caveolin expression in gonadotropin-releasing hormone-expressing GN11 and gonadotropin-releasing hormone-secreting GT1-7 neuronal cells. Neurochem Res 27, 831–840 (2002).

    PubMed  Google Scholar 

  152. S. L. Shyng, J. E. Heuser and D. A. Harris, A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J Cell Biol 125, 1239–1250 (1994).

    PubMed  Google Scholar 

  153. P. Oh and J. E. Schnitzer, Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 12, 685–698 (2001).

    PubMed  Google Scholar 

  154. H. E. Beggs, P. Soriano and P. F. Maness, NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J Cell Biol 127, 825–833 (1994).

    PubMed  Google Scholar 

  155. H. E. Beggs, S. C. Baragona, J. J. Hemperly and P. F. Maness, NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn). J Biol Chem 272, 8310–8319 (1997).

    PubMed  Google Scholar 

  156. K. Kasahara, Y. Watanabe, T. Yamamoto and Y. Sanai, Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains. J Biol Chem 272, 29947–29953 (1997).

    PubMed  Google Scholar 

  157. V. Horejsi, M. Cebecauer, J. Cerny, T. Brdicka, P. Angelisova and K. Drbal, Signal transduction in leucocytes via GPI-anchored proteins: an experimental artefact or an aspect of immunoreceptor function? Immunol Lett 63, 63–73 (1998).

    PubMed  Google Scholar 

  158. K. Kasahara and Y. Sanai, Possible roles of glycosphingolipids in lipid rafts. Biophys Chem 82, 121–127 (1999).

    PubMed  Google Scholar 

  159. R. M. Smith, S. Harada, J. A. Smith, S. Zhang and L. Jarett, Insulin-induced protein tyrosine phosphorylation cascade and signalling molecules are localized in a caveolin-enriched cell membrane domain. Cell Signal 10, 355–362 (1998).

    PubMed  Google Scholar 

  160. C. B. Wu, S. Butz, Y. S. Ying and R. G. W. Anderson, Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem 272, 3554–3559 (1997).

    PubMed  Google Scholar 

  161. S. J. DeArmond, K. Kristensson and R. P. Bowler, PrPSc causes nerve cell death and stimulates astrocyte proliferation: a paradox. Prog Brain Res 94, 437–446 (1992).

    PubMed  Google Scholar 

  162. K. Kristensson, B. Feuerstein, A. Taraboulos, W. C. Hyun, S. B. Prusiner and S. J. DeArmond, Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology 43, 2335–2341 (1993).

    PubMed  Google Scholar 

  163. K. Wong, Y. Qiu, W. Hyun, R. Nixon, J. VanCleff, J. Sanchez-Salazar, S. B. Prusiner and S. J. DeArmond, Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology 47, 741–750 (1996).

    PubMed  Google Scholar 

  164. P. Östlund, H. Lindegren, C. Pettersson and K. Bedecs, Altered insulin receptor processing and function in scrapie-infected neuroblastoma cell lines. Brain Res Mol Brain Res 97, 161–170. (2001).

    PubMed  Google Scholar 

  165. D. Nielsen, H. Gyllberg, P. Östlund, T. Bergman and K. Bedecs, Increased levels of insulin and insulin-like growth factor-1 hybrid receptors and decreased glycosylation of the insulin receptor alpha-and beta-subunits in scrapie-infected neuroblastoma N2a cells. Biochem J 380, 571–579 (2004).

    PubMed  Google Scholar 

  166. M. Diez, J. Koistinaho, S. J. Dearmond, D. Groth, S. B. Prusiner and T. Hokfelt, Marked decrease of neuropeptide Y Y2 receptor binding sites in the hippocampus in murine prion disease. Proc Natl Acad Sci USA 94, 13267–13272 (1997).

    PubMed  Google Scholar 

  167. J. Tatzelt, J. Zuo, R. Voellmy, M. Scott, U. Hartl, S. B. Prusiner and W. J. Welch, Scrapie prions selectively modify the stress response in neuroblastoma cells. Proc Natl Acad Sci USA 92, 2944–2948 (1995).

    PubMed  Google Scholar 

  168. J. Tatzelt, R. Voellmy and W. J. Welch, Abnormalities in stress proteins in prion diseases. Cell Mol Neurobiol 18, 721–729 (1998).

    PubMed  Google Scholar 

  169. H. Ovadia, H. Rosenmann, E. Shezen, M. Halimi, I. Ofran and R. Gabizon, Effect of scrapie infection on the activity of neuronal nitric-oxide synthase in brain and neuroblastoma cells. J Biol Chem 271, 16856–16861 (1996).

    PubMed  Google Scholar 

  170. H. Lindegren, P. Östlund, H. Gyllberg and K. Bedecs, Loss of lipopolysaccharide-induced nitric oxide production and inducible nitric oxide synthase expression in scrapie-infected N2a cells. J Neurosci Res 71, 291–299. (2003).

    PubMed  Google Scholar 

  171. S. Akashi, H. Ogata, F. Kirikae, T. Kirikae, K. Kawasaki, M. Nishijima, R. Shimazu, Y. Nagai, K. Fukudome, M. Kimoto and K. Miyake, Regulatory roles for CD14 and phosphatidylinositol in the signaling via toll-like receptor 4-MD-2. Biochem Biophys Res Commun 268, 172–177 (2000).

    PubMed  Google Scholar 

  172. A. Pfeiffer, A. Bottcher, E. Orso, M. Kapinsky, P. Nagy, A. Bodnar, I. Spreitzer, G. Liebisch, W. Drobnik, K. Gempel, M. Horn, S. Holmer, T. Hartung, G. Multhoff, G. Schutz, H. Schindler, A. J. Ulmer, H. Heine, F. Stelter, C. Schutt, G. Rothe, J. Szollosi, S. Damjanovich and G. Schmitz, Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31, 3153–3164. (2001).

    PubMed  Google Scholar 

  173. P. Y. Wang, R. L. Kitchens and R. S. Munford, Bacterial lipopolysaccharide binds to CD14 in low-density domains of the monocyte-macrophage plasma membrane. J Inflamm 47, 126–137. (1995).

    PubMed  Google Scholar 

  174. K. V. Anderson, Toll signaling pathways in the innate immune response. Curr Opin Immunol 12, 13–19 (2000).

    PubMed  Google Scholar 

  175. F. Stelter, Structure/function relationships of CD14. Chem Immunol 74, 25–41. (2000).

    PubMed  Google Scholar 

  176. H. A. Hopkins, M. M. Monick and G. W. Hunninghake, Cytomegalovirus inhibits CD14 expression on human alveolar macrophages. J Infect Dis 174, 69–74 (1996).

    PubMed  Google Scholar 

  177. M. K. Sandberg, P. Wallen, M. A. Wikstrom and K. Kristensson, Scrapie-infected GT1-1 cells show impaired function of voltage-gated N-type calcium channels (Ca(v) 2.2) which is ameliorated by quinacrine treatment. Neurobiol Dis 15, 143–151 (2004).

    PubMed  Google Scholar 

  178. W. K. Ju, K. J. Park, E. K. Choi, J. Kim, R. I. Carp, H. M. Wisniewski and Y. S. Kim, Expression of inducible nitricoxidesynthase in the brainsof scrapie-infected mice. J Neurovirol 4, 445–450 (1998).

    PubMed  Google Scholar 

  179. A. Williams, P. J. Lucassen, D. Ritchie and M. Bruce, PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144, 433–438 (1997).

    PubMed  Google Scholar 

  180. A. Williams, A. M. Van Dam, D. Ritchie, P. Eikelenboom and H. Fraser, Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res 754, 171–180 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bedecs, K. (2005). Cell Culture Models to Unravel Prion Protein Function and Aberrancies in TSE. In: Brown, D.R. (eds) Neurodegeneration and Prion Disease. Springer, Boston, MA. https://doi.org/10.1007/0-387-23923-5_14

Download citation

Publish with us

Policies and ethics