Skip to main content

Optimal Discrete Event Control of Gas Turbine Engines

  • Chapter

Summary

This chapter presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages described in Chapter 1. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability. Extensive simulation studies on the test bed show that the optimally designed supervisor yields the best performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Fu, C.M. Lagoa, and A. Ray, Robust optimal control of regular languages with event cost uncertainties, Proceedings of IEEE Conference on Decision and Control, December 2003, pp. 3209–3214.

    Google Scholar 

  2. J. Fu, A. Ray, and C.M. Lagoa, Optimal control of regular languages with event disabling cost, Proceedings of American Control Conference, Denver, Colorado, June 2003, pp. 1691–1695.

    Google Scholar 

  3. J. Fu, A. Ray, and C.M. Lagoa, Unconstrained optimal control of regular languages, Automatica 40 (2004), no. 4, 639–648.

    Article  MATH  MathSciNet  Google Scholar 

  4. P.J. Ramadge and W.M. Wonham, Supervisory control of a class of discrete event processes, SIAM J. Control and Optimization 25 (1987), no. 1, 206–230.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Ray and S. Phoha, Signed real measure of regular languages for discrete-event automata, Int. J. Control 76 (2003), no. 18, 1800–1808.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Surana and A. Ray, Signed real measure of regular languages, Demonstratio Mathematica 37 (2004), no. 2, 485–503.

    MATH  MathSciNet  Google Scholar 

  7. X. Wang and A. Ray, A language measure for performance evaluation of discrete-event supervisory control systems, Applied Mathematical Modelling 28 (2004), no. 9, 817–833.

    Article  MATH  Google Scholar 

  8. X. Wang, A. Ray, and A. Khatkhate, On-line identification of language measure parameters for discrete event supervisory control, Proceedings of 42nd IEEE Conference on Decision and Control (Maui, Hawaii), December 2003, pp. 6307–6312.

    Google Scholar 

  9. X. Wang, A. Ray, S. Phoha, and J. Liu, J-des: A graphical interactive package for analysis and synthesis of discrete event systems, Proceedings of American Control Conference (Denver, Colorado), June 2003, pp. 3405–3410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Yasar, M., Fu, J., Ray, A. (2005). Optimal Discrete Event Control of Gas Turbine Engines. In: Ray, A., Phoha, V.V., Phoha, S.P. (eds) Quantitative Measure for Discrete Event Supervisory Control. Springer, New York, NY. https://doi.org/10.1007/0-387-23903-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-23903-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-02108-9

  • Online ISBN: 978-0-387-23903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics