Steiner Trees in Industry

  • Xiuzhen Cheng
  • Yingshu Li
  • Ding-Zhu Du
  • Hung Q. Ngo

4 Conclusion

The following problems are worth studying:
  • Open problems on the Steiner ratio, such as Chung-Gilbert’s conjecture, Graham-Hwang’s conjecture, and Cielick’s conjecture, etc..

  • Find better approximation for network Steiner trees and establish an explicit lower bound for the approximation performance ratio of network Steiner trees.

  • Close the gap between the lower bound and the upper bound for the approximation performance ratio of Steiner minimum arborescence.

  • Find more efficient approximation algorithms for on-line and dynamic Steiner minimum trees and various Steiner tree packing problems.

  • Find good approximation algorithms for multi-weighted Steiner trees and multiphase Steiner trees and study close relationship between multi-weighted Steiner trees, multiphase Steiner trees, and phylogenetic trees.

  • Make clear whether there exists a polynomial-time approximation scheme for class Steiner tree in the special case with the real world background and highway interconnection problem.

  • Close the gap between the lower bound and the upper bound for the approximation performance ratio of bottleneck Steiner tree in the Euclidean plane and make clear whether there exists a polynomial-time approximation scheme for the Steiner tree with minimum number of Steiner points and bounded edge-length.

  • Implement efficient approximation algorithms to meet the requests from industries.

We believe that to attack these new and old open problems new techniques are still required and the Steiner tree is still an attractive topic for researchers in combinatorial optimization and computer science.


Minimum Span Tree Steiner Tree Steiner Point Steiner Tree Problem Minkowski Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Aharoni and R. Cohen [1998], Restricted dynamic Steiner trees for scalable multicast in datagram networks, IEEE/ACM Transactions on Networking, 6, no.3, 286–297.CrossRefGoogle Scholar
  2. N. Alon and Y. Azar [1993], On-line Steiner trees in the Euclidean plane, Discrete Comput. Geom. 10, no. 2, 113–121.zbMATHMathSciNetGoogle Scholar
  3. S. Arora [1996], Polynomial time approximation schemes for Euclidean TSP and other geometric problems, Proceedings of 37th FOCS, 1996, pp. 2–12.Google Scholar
  4. C. Beeri, R. Fagin, D. Maier, M. Yannakakis [1983], On the desirability of acyclic database schemes, J. ACM 30, 479–513.zbMATHMathSciNetCrossRefGoogle Scholar
  5. P. Berman and V. Ramaiyer [1994], Improved approximations for the Steiner tree problem, J. of Algorithm 17, 381–408.zbMATHMathSciNetCrossRefGoogle Scholar
  6. M. Bern and P. Plassmann [1989], The Steiner problem with edge lengths 1 and 2, Information Processing Letters 32, 171–176.zbMATHMathSciNetCrossRefGoogle Scholar
  7. R.S. Booth [1991], The Steiner ratio for five points, Discrete and Computational Geometry.Google Scholar
  8. A. Borchers and D.-Z. Du [1995], The k-Steiner ratio in graphs, in Proceedings of 27th STOC.Google Scholar
  9. A. Borchers, D.-Z. Du, B. Gao and P.-J. Wan [1998], The k-Steiner ratio in the rectilinear plane, Journal of Algorithms, 29, 1–7.zbMATHMathSciNetCrossRefGoogle Scholar
  10. M. Brazil, T. Cole, J.H. Rubinstein, D.A. Thomas, J.F. Weng, and N.C. Wormald [1996], Minimal Steiner trees for 2 k × 2 k square lattices. Journal of Combinatorial Theory, Series A 73, 91–110.zbMATHMathSciNetCrossRefGoogle Scholar
  11. P.J. Campbell [1992], Mathematics, Science and the Future, 1992 Year Book, Encyclopaedia, Britannica, Inc., London, 373–376.Google Scholar
  12. L.L. Cavalli-Sforza and A.W. Edwards [1967], Phylogenetic analysis: models and estimation procedures, Am. J. Human Genetics, 19, 233–257.Google Scholar
  13. S.-K. Chang [1972], The generation of minimal trees with a Steiner topology, J. ACM, 19, 699–711.zbMATHCrossRefGoogle Scholar
  14. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li [1999], Approximation algorithms for directed Steiner problems. J. Algorithms 33, no. 1, 73–91.zbMATHMathSciNetCrossRefGoogle Scholar
  15. D. Chen, D.-Z. Du, X. Hu, G.-H. Lin, L. Wang, and G. Xue [2000], Approximations for Steiner trees with minimum number of Steiner points, accepted by Journal of Global Optimization.Google Scholar
  16. F.R.K. Chung and E.N. Gilbert [1976], Steiner trees for the regular simplex, Bull. Inst. Math. Acad. Sinica, 4, 313–325.zbMATHMathSciNetGoogle Scholar
  17. F.R.K. Chung and R.L. Graham [1985], A new bound for euclidean Steiner minimum trees, Ann. N.Y. Acad. Sci., 440, 328–346.zbMATHMathSciNetGoogle Scholar
  18. F.R.K. Chung and F.K. Hwang [1978], A lower bound for the Steiner tree problem, SIAM J.Appl.Math., 34, 27–36.zbMATHMathSciNetCrossRefGoogle Scholar
  19. D. Cieslik [1990], The Steiner ratio of Banach-Minkowski planes, Contemporary Methods in Graph Theory (ed. R. Bodendiek), BI-Wissenschatteverlag, Mannheim, 231–248.Google Scholar
  20. D. Cieslik [1998], Steiner Minimal Trees, Kluwer.Google Scholar
  21. B.A. Cipra [1990], In math, less is more — up to a point, Science, 1081–1082.Google Scholar
  22. B.A. Cipra [1991], Euclidean geometry alive and well in the computer age, SIAM News, 24:1.Google Scholar
  23. D.-Z. Du, B. Gao, R.L. Graham, Z.-C. Liu, and P.-J. Wan [1993], Minimum Steiner trees in normed planes, Discrete and Computational Geometry, 9, 351–370.zbMATHMathSciNetCrossRefGoogle Scholar
  24. D.Z. Du and F.K. Hwang [1983], A new bound for the Steiner ratio, Trans. Amer. Math. Soc. 278, 137–148.zbMATHMathSciNetCrossRefGoogle Scholar
  25. D.Z. Du, F.K. Hwang, and E.Y. Yao [1985], The Steiner ratio conjecture is true for five points, J. Combinatorial Theory, Series A, 38, 230–240.zbMATHMathSciNetCrossRefGoogle Scholar
  26. D.Z. Du and F.K. Hwang [1990], The Steiner ratio conjecture of Gilbert-Pollak is true, Proceedings of National Academy of Sciences, 87, 9464–9466.zbMATHMathSciNetCrossRefGoogle Scholar
  27. D.-Z. Du, F.K. Hwang [1999], and G. Xue: Interconnecting highways, SIAM Discrete Mathematics 12, 252–261.zbMATHMathSciNetCrossRefGoogle Scholar
  28. D.-Z. Du and Z. Miller [1988], Matroids and subset interconnection design, SIAM J. Disc. Math., 1, 416–424.zbMATHMathSciNetCrossRefGoogle Scholar
  29. D.-Z. Du, L.-Q. Pan, and M.-T. Shing [1986], Minimum edge length guillotine rectangular partition, Report 02418-86, Math. Sci. Res. Inst., Univ. California, Berkeley, CA 1986.Google Scholar
  30. D.-Z. Du and P.M. Pardolas [1994], A continuous version of a result of Du and Hwang, Journal of Global Optimization, 5, 127–129.zbMATHCrossRefGoogle Scholar
  31. D.-Z. Du and W.D. Smith [1996], Three disproofs for Gilbert-Pollak conjecture in high dimensional spaces, Journal of Combinatorial Theory, 74, 115–130.zbMATHMathSciNetCrossRefGoogle Scholar
  32. D.Z. Du, Y. Zhang, and Q. Feng [1991], On better heuristic for euclidean Steiner minimum trees, Proceedings 32nd FOCS, 431–439.Google Scholar
  33. P. Duchet [1978], Propriete de Helly et problemes de representation, in: Colloque International Paris-Orsay 260, 117–118.zbMATHGoogle Scholar
  34. C. Duin [1991], T. Volgenant, The multi-weighted Steiner tree problem, Annals of Operations Research 33, 451–469.zbMATHMathSciNetCrossRefGoogle Scholar
  35. J. Friedel and P. Widmayer [1989], A simple proof of the Steiner ratio conjecture for five points, SIAM J. Appl. Math. 49, 960–967.zbMATHMathSciNetCrossRefGoogle Scholar
  36. L.R. Foulds and R.L. Graham [1982], The Steiner problem in Phylogeny is NP-complete, Advanced Applied Mathematics, 3, 43–49.zbMATHMathSciNetCrossRefGoogle Scholar
  37. B. Gao, D.-Z. Du, and R.L. Graham [1995], A tight lower bound for the Steiner ratio in Minkowski planes, Discrete Mathematics, 142, 49–63.zbMATHMathSciNetCrossRefGoogle Scholar
  38. M.R. Garey, R.L. Graham and D.S. Johnson [1977], The complexity of computing Steiner minimal trees, SIAM J. Appl. Math., 32, 835–859.zbMATHMathSciNetCrossRefGoogle Scholar
  39. M.R. Garey and D.S. Johnson [1997], The rectilinear Steiner tree is NP-complete, SIAM J. Appl. Math., 32, 826–834.MathSciNetCrossRefGoogle Scholar
  40. E.N. Gilbert and H.O. Pollak [1968], Steiner minimal trees, SIAM J. Appl. Math., 16, 1–29.zbMATHMathSciNetCrossRefGoogle Scholar
  41. R.L. Graham and F.K. Hwang [1976], Remarks on Steiner minimal trees, Bull. Inst. Math. Acad. Sinica, 4, 177–182.zbMATHMathSciNetGoogle Scholar
  42. F.K. Hwang [1976], On Steiner minimal trees with rectilinear distance, SIAM J. Appl. Math., 30, 104–114.zbMATHMathSciNetCrossRefGoogle Scholar
  43. F.K. Hwang [1990], Flag down but sail up, Mathematical Dissemination 12:2, 5–7.Google Scholar
  44. F.K. Hwang, D.S. Rechards, and P. Winter [1992], Steiner tree problems North-Holland, Amsterdam.Google Scholar
  45. A. Iwainsky [1985], Optimal trees-a short overview on problem formulations, in A. Iwainsky (ed.) Optimization of Connections Structures in Graphs, CICIP, East Berlin, GDR, 121–133.Google Scholar
  46. E. Ihler, G. Reich, and P. Widmayer [1999], Class Steiner trees and VLSI-design, Discrete Applied Mathematics 90, 173–194.zbMATHMathSciNetCrossRefGoogle Scholar
  47. T. Jiang, E.L. Lawler, and L. Wang [1994], Aligning sequences via an evolutionary tree: complexity and approximation, Proceedings of 26th STOC.Google Scholar
  48. T. Jiang and L. Wang [1994], An approximation scheme for some Steiner tree problems in the plane, LNCS 834, 414–422.zbMATHMathSciNetGoogle Scholar
  49. R.M. Karp [1972], Reducibility among combinatorial problems, in R.E. Miller and J.W. Tatcher (ed.), Complexity of Computer Computation, Plenum Press, New York, 85–103.Google Scholar
  50. M. Karpinski and A.Z. Zelikovsky [1997], New approximation algorithms for the Steiner tree problems, Journal of Combinatorial Optimization, 1, 47–65.zbMATHMathSciNetCrossRefGoogle Scholar
  51. G. Kolata [1990], Solution to old puzzle: how short a shortcut? New York Times October 30.Google Scholar
  52. P. Korthonen [1979], An algorithm for transforming a spanning tree into a Steiner tree, Survey of Mathematical Programming (2), North-Holland, 349–357.Google Scholar
  53. L. Kou and K. Makki [1987], An even faster approximation algorithm for the Steiner tree problem in graph, Congressus Numerantium 59, 147–154.zbMATHMathSciNetGoogle Scholar
  54. C.-S. Li, F.F. Tong, C.J. Georgiou and M. Chen [1994], Gain equalization in metropolitan and wide area optical networks using optical amplifiers, Proc. IEEE INFOCOM’ 94, pp. 130–137, June.Google Scholar
  55. G.-H. Lin and G.L. Xue [1999], Steiner tree problem with minimum number of Steiner points and bounded edge-length, Information Processing Letters, 69, 53–57.MathSciNetCrossRefGoogle Scholar
  56. B. Lu, J. Gu, X. Hu, and E. Shragowitz [2000], Wire segmenting for buffer insertion based on RSTP-MSP, accepted by Theoretical Computer Science.Google Scholar
  57. B. Lu and L. Ruan [2000], Polynomial-time approximation scheme for rectilinear Steiner arborescence problem, Journal of Combinatorial Optimization, 357–363.Google Scholar
  58. M.S. Manase, L.A. McGeoch, and D.D. Sleator [1988], Competitive algorithms for on-line problems, Proc. of 20th STOC, Chacago.Google Scholar
  59. J. S. B. Mitchell [1996], Guillotine subdivisions approximate polygonal subdivisions: A simple new method for the geometric k-MST problem, Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, 402–408.Google Scholar
  60. J. S. B. Mitchell [1997], Guillotine subdivisions approximate polygonal subdivisions: Part III-Faster polynomial-time approximation scheme for geometric network optimization,” Proc. ninth Canadian conference on computational geometry, 229–232.Google Scholar
  61. J. S. B. Mitchell [1999], Guillotine subdivisions approximate polygonal subdivisions: Part II-A simple polynomial-time approximation scheme for geometric k-MST, TSP, and related problems, SIAM J. Comp. 28, 1298–1309.zbMATHCrossRefGoogle Scholar
  62. J. S. B. Mitchell, A. Blum, P. Chalasani, and S. Vempala [1999], A constant-factor approximation for the geometric k-MST problem in the plane, SIAM J. Comp. 28, 771–781.zbMATHMathSciNetCrossRefGoogle Scholar
  63. I. Peterson [1990], Proven path for limiting shortest shortcut, Science News, December 22 & 29, 389.Google Scholar
  64. H.O. Pollak [1978], Some remarks on the Steiner problem, J. Combinatorial Theory, Ser.A, 24, 278–295.zbMATHMathSciNetCrossRefGoogle Scholar
  65. E. Prisner [1992], Two algorithms for the subset interconnection design, Networks 22, 385–395.zbMATHMathSciNetGoogle Scholar
  66. W.R. Pulleyblank [1995], Two Steiner tree packing problems, 27th STOC, pp.383–387.Google Scholar
  67. B. Ramamurthy, J. Iness and B. Mukherjee [1997], Minimizing the number of optical amplifiers needed to support a multi-wavelength optical LAN/MAN, Proc. IEEE INFOCOM’ 97, pp. 261–268, April.Google Scholar
  68. S.K. Rao, P. Sadayappan, F.K. Hwang, and P.W. Shor [1992], The rectilinear Steiner arborescence problem, Algorithmica 7, 277–288.zbMATHMathSciNetCrossRefGoogle Scholar
  69. J.H. Rubinstein and D.A. Thomas [1991], The Steiner ratio conjecture for six points, J. Combinatoria Theory, Ser.A, 58, 54–77.zbMATHMathSciNetCrossRefGoogle Scholar
  70. A. Sangalli [1991], Mathematicians learn how to join the dots, New Scientists April, 22.Google Scholar
  71. P. Schreiber [1986], On the history of the so-called Steiner weber problem, Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math.-nat.wiss. Reihe, 35, no.3.Google Scholar
  72. W. Shi and C. Su [2000], The rectilinear Steiner arborescence problem is NP-complete, Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA).Google Scholar
  73. D.D. Sleator and R.E. Tarjan [1985], Amortized efficiency of list uptate and paging rules, Commications of ACM 28, 202–208.MathSciNetCrossRefGoogle Scholar
  74. J.M. Smith and J.S. Liebman [1979], Steiner trees, Steiner circuits and interference problem in building design, Engineering Optimization, 4, 15–36.Google Scholar
  75. J.M. Smith, D.T. Lee, and J.S. Liebman [1981], An O(N log N) heuristic for Steiner minimal tree problems in the Euclidean metric, Networks, 11, 23–39.zbMATHMathSciNetGoogle Scholar
  76. W.D. Smith [1992], How to find Steiner minimal trees in Euclidean d-space, Algorithmica, 7.Google Scholar
  77. W.D. Smith and P.W. Shor [1992], Steiner tree problems, Algorithmica, 7, 329–332.zbMATHMathSciNetCrossRefGoogle Scholar
  78. I. Stewart [1991], Trees, telephones and tiles, New Scientist 16 (1991) 26–29.Google Scholar
  79. R.E. Tarjan and M. Yannakakis [1984], Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput. 13, 566–579.zbMATHMathSciNetCrossRefGoogle Scholar
  80. Y.T. Tsai, C.Y. Tang, and Y.Y. Chen [1996], An average case analysis of a greedy algorithm for the on-line Steiner tree problem, Comput. Math. Appl. 31, no. 11, 121–131.zbMATHMathSciNetCrossRefGoogle Scholar
  81. P.-J. Wan, D.-Z. Du, and R.L. Graham [1997], The Steiner ratio on the dual normed plane, Discrete Mathematics 171, 261–275.zbMATHMathSciNetCrossRefGoogle Scholar
  82. L. Wang and D.-Z. Du [2000], Approximations for a Bottleneck Steiner Tree Problem, submitted for publication.Google Scholar
  83. B.M. Waxman and M. Imase [1988], Worst-case performance of Rayward-Smith’ s Steiner tree heuristic, Inform. Process. Lett. 29, 283–287.zbMATHMathSciNetCrossRefGoogle Scholar
  84. J. Westbrook and D.C.K. Yan [1995], The performance of greedy algorithms for the on-line Steiner tree and related problems, Math. Systems Theory 28, no. 5, 451–468.zbMATHMathSciNetCrossRefGoogle Scholar
  85. Y.F. Wu, P. Widmayer, and C.K. Wong [1986], A faster approximation algorithm for the Steiner problem in graphs, Acta Informatica, 23, 223–229.zbMATHMathSciNetCrossRefGoogle Scholar
  86. A.Z. Zelikovsky [1993], The 11/6-approximation algorithm for the Steiner problem on networks, Algorithmica 9, 463–470.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Xiuzhen Cheng
    • 1
  • Yingshu Li
    • 2
  • Ding-Zhu Du
    • 2
  • Hung Q. Ngo
    • 3
  1. 1.Department of Computer ScienceGeorge Washington UniversityUSA
  2. 2.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolis
  3. 3.Department of Computer Science and EngineeringState University of New YorkBuffalo

Personalised recommendations