Skip to main content

Probabilistic Verification and Non-Approximability

  • Chapter
  • 1685 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, J. Komlós, E. Szemeredi, Deterministic simulation in logspace, Proceedings of 19th Annual Symp. on the Theory of Computing, ACM, pp 132–140, (1987)

    Google Scholar 

  2. N. Alon, U. Feige, A. Wigderson, D. Zuckerman, Derandomized graph products, Computational Complexity (1995) pp. 60–75.

    Google Scholar 

  3. N. Alon, E. Fischer and M. Krivelevich, M. Szegedy “Logical Property Testing”, FOCS 1999

    Google Scholar 

  4. N. Alon, M. Krivelevich, I. Newman, M. Szegedy “Regularity Testing”, FOCS 1999

    Google Scholar 

  5. S. Arora, Probabilistic Checking of Proofs and Hardness of Approximation Problems, PhD thesis, U.C. Berkeley, 1994. Available from http://www.cs.princeton.edu/~arora.

    Google Scholar 

  6. S. Arora, Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. Proceedings of 37th IEEE Symp. on Foundations of Computer Science, pp 2–12, 1996.

    Google Scholar 

  7. S. Arora, L. Babai, J. Stern, and Z. Sweedyk, The hardness of approximate optima in lattices, codes, and systems of linear equations. Journal of Computer and System Sciences, 54(2):317–331, April 1997.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Arora, D. Karger, M. Karpinski, Polynomial Time Approximation Schemes for Dense Instances of NP-hard Problems, J. Comput. System Sci. 58 (1999), pp. 193–210.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Arora and C. Lund, Hardness of approximations. In Approximation Algorithms for NP-hard problems, D. Hochbaum, ed. PWS Publishing, 1996.

    Google Scholar 

  10. S. Arora, C, Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the intractability of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary version in Proc. of FOCS’92.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Arora, R. Motwani, S. Safra, M. Sudan, and M. Szegedy, PCP and approximation problems. Unpublished note, 1992.

    Google Scholar 

  12. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version in Proc. of FOCS’92.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Arora and M. Sudan. Improved low degree testing and its applications. In Proceedings of the 29th ACM Symposium on Theory of Computing, pages 485–495, 1997.

    Google Scholar 

  14. G. Ausiello, A. D’Atri, and M. Protasi, Structure Preserving Reductions among Convex Optimization Problems. Journal of Computer and Systems Sciences, 21:136–153, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and Approximation, Springer Verlag, ISBN 3-540-65431-3.

    Google Scholar 

  16. G. Ausiello, A. Marchetti-Spaccamela and M. Protasi, Towards a Unified Approach for the Classification of NP-complete Optimization Problems. Theoretical Computer Science, 12:83–96, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Babai, Trading group theory for randomness. Proceedings of the Seventeenth Annual Symposium on the Theory of Computing, ACM, 1985.

    Google Scholar 

  18. L. Babai E-mail and the unexpected power of interaction, Proc. 5th IEEE Structure in Complexity Theory conf., Barcelona 1990, pp. 30–44.

    Google Scholar 

  19. L. Babai, Transparent (holographic) proofs. Proceedings of the Tenth Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science Vol. 665, Springer Verlag, 1993.

    Google Scholar 

  20. L. Babai, Transparent proofs and limits to approximation. Proc. First European Congress of Mathematics (1992), Vol. I, Birkhäuser Verlag, 1994, pp. 31–91.

    MATH  MathSciNet  Google Scholar 

  21. L. Babai and L. Fortnow, Arithmetization: a new method in structural complexity theory. Computational Complexity, 1:41–66, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  22. L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Babai, L. Fortnow, L. Levin, and M. Szegedy, Checking computations in polylogarithmic time. Proceedings of the Twenty Third Annual Symposium on the Theory of Computing, ACM, 1991.

    Google Scholar 

  24. L. Babai and K. Friedl, On slightly superlinear transparent proofs. Univ. Chicago Tech. Report, CS-93-13, 1993.

    Google Scholar 

  25. L. Babai and S. Moran, Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences, 36:254–276, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  26. Bar-Yehuda, R., and Even, S. (1985), A local-ratio theorem for approximating the weighted vertex cover problem, Analysis and Design of Algorithms for Combinatorial Problems, volume 25 of Annals of Disc. Math., Elsevier science publishing company, Amsterdam, 27–46.

    Google Scholar 

  27. D. Beaver and J. Feigenbaum, Hiding instances in multioracle queries. Proceedings of the Seventh Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science Vol. 415, Springer Verlag, 1990.

    Google Scholar 

  28. M. Bellare. Interactive proofs and approximation: reductions from two provers in one round. Proceedings of the Second Israel Symposium on Theory and Computing Systems, 1993.

    Google Scholar 

  29. M. Bellare. Proof checking and approximation: Towards tight results. Sigact News, 27(1), 1996.

    Google Scholar 

  30. M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi and M. Sudan, Linearity testing in characteristic two. IEEE Transactions on Information Theory 42(6):1781–1795, November 1996.

    Article  MATH  Google Scholar 

  31. M. Bellare, O. Goldreich and M. Sudan, Free bits, PCPs and nonapproximability — towards tight results. To appear SIAM Journal on Computing, SIAM Journal on Computing, 27(3):804–915, 1998. Preliminary version in Proc. of FOCS’95. Full version available as TR95024 of ECCC, the Electronic Colloquium on Computational Complexity, http://www.eccc.uni-trier.de/eccc/.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistically checkable proofs. Proceedings of the Twenty Fifth Annual Symposium on the Theory of Computing, ACM, 1993. (See also Errata sheet in Proceedings of the Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994).

    Google Scholar 

  33. M. Bellare and P. Rogaway, The complexity of approximating a nonlinear program. Journal of Mathematical Programming B, 69(3):429–441, September 1995. Also in Complexity of Numerical Optimization, Ed. P. M. Pardalos, World Scientific, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Bellare and M. Sudan, Improved non-approximability results. Proceedings of the Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994, pages 184–193.

    Google Scholar 

  35. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, Multi-prover interactive proofs: How to remove intractability assumptions. Proceedings of the Twentieth Annual Symposium on the Theory of Computing, ACM, 1988.

    Google Scholar 

  36. Berman, P., and Karpinski, M., On some tighter inapproximability results, Proc. 26th ICALP, pages 200–209 (1999); also available as Technical Report TR98-029, ECCC.

    Google Scholar 

  37. P. Berman and G. Schnitger. On the complexity of approximating the independent set problem. Information and Computation 96:77–94, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Bern and P. Plassmann, The steiner problem with edge lengths 1 and 2. Information Processing Letters, 32:171–176, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Blum, Algorithms for Approximate Graph Coloring, Ph.D. Thesis, Massachusetts Institute of Technology, 1991 (MIT/LCS/TR-506, June 1991)

    Google Scholar 

  40. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis, Linear approximation of shortest superstrings. Journal of the ACM, 41(4):630–647, July 1994.

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Blum, Program checking. Proc. FST&TCS, Springer L.N.C.S. 560, pp. 1–9.

    Google Scholar 

  42. M. Blum and S. Kannan, Designing Programs that Check Their Work. Proceedings of the Twenty First Annual Symposium on the Theory of Computing, ACM, 1989.

    Google Scholar 

  43. M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, December 1993.

    Article  MATH  MathSciNet  Google Scholar 

  44. R. Boppana, and M. M. Halldórsson, Approximating maximum independent sets by excluding subgraphs, Bit 32, 180–196, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  45. J. Cai, A. Condon, and R. Lipton. PSPACE is provable by two provers in one round. Journal of Computer and System Sciences, 48(1):183–193, February 1994.

    Article  MATH  MathSciNet  Google Scholar 

  46. CT M. Cesati and L. Trevisan. On the Efficiency of Polynomial Time Approximation Schemes. Information Processing Letters, 64(4):165–171, 1997.

    Article  MathSciNet  Google Scholar 

  47. V. Chvatal, A greedy heuristic for the set covering problem, Math. Oper. Res., 4, 1979, 233–235.

    MATH  MathSciNet  Google Scholar 

  48. A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak random sources. Proceedings of the Thirtieth Annual Symposium on the Foundations of Computer Science, IEEE, 1989.

    Google Scholar 

  49. A. Condon, The complexity of the max word problem, or the power of one-way interactive proof systems. Proceedings of the Eighth Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science Vol. 480, Springer Verlag, 1991.

    Google Scholar 

  50. A. Condon, J. Feigenbaum, C. Lund and P. Shor, Probabilistically Checkable Debate Systems and Approximation Algorithms for PSPACE-Hard Functions. Proceedings of the Twenty Fifth Annual Symposium on the Theory of Computing, ACM, 1993.

    Google Scholar 

  51. A. Condon, J. Feigenbaum, C. Lund and P. Shor, Random debaters and the hardness of approximating stochastic functions. SIAM Journal on Computing, 26(2):369–400, April 1997.

    Article  MATH  MathSciNet  Google Scholar 

  52. S. Cook, The complexity of theorem-proving procedures. Proceedings of the Third Annual Symposium on the Theory of Computing, ACM, 1971.

    Google Scholar 

  53. P. Crescenzi and V. Kann, A compendium of NP optimization problems. Technical Report, Dipartimento di Scienze dell’Informazione, Università di Roma “La Sapienza”, SI/RR-95/02, 1995. The list is updated continuously. The latest version is available by anonymous ftp from nada.kth.se as Theory/Viggo-Kann/compendium.ps.Z. Web address: http://www.nada.kth.se/~viggo/problemlist/compendium.html

    Google Scholar 

  54. Pierluigi Crescenzi, Viggo Kann, Riccardo Silvestri, Luca Trevisan, Structure in Approximation Classes, Electronic Colloquium on Computational Complexity (ECCC) (066): (1996); SIAM J. on Computing, 28 (5):1759–1782, 1999.

    Google Scholar 

  55. P. Crescenzi and L. Trevisan, MAXNP-completeness Made Easy, Theoretical Computer Science, 225(1–2):65–79, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  56. Pierluigi Crescenzi, Luca Trevisan, On Approximation Scheme Preserving Reducibility and Its Applications. Theory of Computing Systems 33(1): 1–16 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  57. E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis, The complexity of multiway cuts. SIAM Journal on Computing, 23:4, pp. 864–894, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  58. W. De la Vega and G. Lueker, Bin Packing can be solved within 1 + ε in Linear Time. Combinatorica, vol. 1, pages 349–355, 1981.

    MATH  MathSciNet  Google Scholar 

  59. I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP characterizations of NP: Towards a polynomially-small error-probability. In Proceedings of the 31st ACM Symposium on Theory of Computing, pages 29–40, 1999.

    Google Scholar 

  60. L. Engebretsen and J. Holmerin, Clique is hard to Approximate within n 1−o(1), Manuscript

    Google Scholar 

  61. R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets. In Richard Karp (ed.), Complexity of Computation, AMS, 1974.

    Google Scholar 

  62. U. Feige, A threshold of ln n for Set Cover. In Proceedings of the Twenty Eighth Annual Symposium on the Theory of Computing, ACM, 1996. Journal Version: Journal of the ACM, 45 (4):634–652, July 1998

    Google Scholar 

  63. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Interactive proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, March 1996.

    Article  MATH  MathSciNet  Google Scholar 

  64. U. Feige, M. Karpinski, M. Langberg, Improved Approximation of Max-Cut on Graphs of Bounded Degree, http://www.wisdom.weizmann.ac.il/~mikel/

    Google Scholar 

  65. U. Feige and J. Kilian. Two prover protocols — Low error at affordable rates. Proceedings of the Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994.

    Google Scholar 

  66. U. Feige and J. Kilian. Zero knowledge and chromatic number. Proceedings of the Eleventh Annual Conference on Complexity Theory, IEEE, 1996, pages 172–183.

    Google Scholar 

  67. U. Feige and L. Lovász, Two-prover one-round proof systems: Their power and their problems. Proceedings of the Twenty Fourth Annual Symposium on the Theory of Computing, ACM, 1992.

    Google Scholar 

  68. L. Fortnow, J. Rompel, and M. Sipser, On the power of multi-prover interactive protocols. Theoretical Computer Science, 134(2):545–557, November 1994.

    Article  MATH  MathSciNet  Google Scholar 

  69. R. Freivalds, Fast Probabilistic Algorithms. Proceedings of Symposium on Mathematical Foundations of Computer Science, Springer-Verlag Lecture Notes in Computer Science, v. 74, pages 57–69, 1979.

    MATH  MathSciNet  Google Scholar 

  70. K. Friedl, Zs. Hátsági and A. Shen, Low-degree testing. Proceedings of the Fifth Symposium on Discrete Algorithms, ACM, 1994.

    Google Scholar 

  71. K. Friedl and M. Sudan, Some improvements to low-degree tests. Proceedings of the Third Israel Symposium on Theory and Computing Systems, 1995.

    Google Scholar 

  72. M. Fürer, Improved hardness results for approximating the chromatic number. Proceedings of the Thirty Sixth Annual Symposium on the Foundations of Computer Science, IEEE, 1995.

    Google Scholar 

  73. M.R. Garey, R.L. Graham, and J.D. Ullman, Worst case analysis of memory allocation algorithms, Proceedings in the 4th Annual ACM Symposium on the Theory of Computing, pp. 143–150, 1972

    Google Scholar 

  74. M. Garey and D. Johnson, The complexity of near-optimal graph coloring. Journal of the ACM, 23:43–49, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  75. M. Garey and D. Johnson, “Strong” NP-completeness results: motivation, examples and implications. Journal of the ACM, 25:499–508, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  76. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

    Google Scholar 

  77. M. Garey, D. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems. Theoretical Computer Science 1:237–267, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  78. P. Gemmell and M. Sudan, Highly resilient correctors for polynomials. Information Processing Letters, 43(4):169–174, September 1992.

    Article  MATH  MathSciNet  Google Scholar 

  79. P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson, Self-testing/correcting for polynomials and for approximate functions. Proceedings of the Twenty Third Annual Symposium on the Theory of Computing, ACM, 1991.

    Google Scholar 

  80. M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145, November 1995.

    Article  MATH  MathSciNet  Google Scholar 

  81. O. Goldreich, A Taxonomy of Proof Systems. In Complexity Theory Retrospective II, L.A. Hemaspaandra and A. Selman (eds.), Springer-Verlag, New York, 1997.

    Google Scholar 

  82. S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof-systems. SIAM J. on Computing, 18(1):186–208, February 1989.

    Article  MATH  MathSciNet  Google Scholar 

  83. R. Graham, Bounds for certain multiprocessing anomalies, Bell Systems Technical Journal, 45:1563–1581, 1966.

    Google Scholar 

  84. R. Graham, Bounds for certain multiprocessing anomalies and related packing algorithms, Proceedings of the Spring Joint Conference, pp: 205–217, 1972.

    Google Scholar 

  85. M. Halldórsson, A still better performance guarantee for approximate graph coloring, Inform. Process. Lett. 46, pages 169–172.

    Google Scholar 

  86. J. Håstad, Testing of the long code and hardness for clique. Proceedings of the Twenty Eighth Annual Symposium on the Theory of Computing, ACM, 1996.

    Google Scholar 

  87. J. Håstad, Clique is hard to approximate within n 1−ε. Proceedings of the Thirty Seventh Annual Symposium on the Foundations of Computer Science, IEEE, 1996, pages 627–636

    Google Scholar 

  88. J. Håstad, Some optimal inapproximability results. Proceedings of the Twenty Eighth Annual Symposium on the Theory of Computing, ACM, 1997, pages 1–10.

    Google Scholar 

  89. J. Håstad, A Rewriting of Feige’s Proof for the Setcover, Unpublished manuscript.

    Google Scholar 

  90. O. Ibarra and C. Kim, Fast approximation algorithms for the knapsack and sum of subset problems, Journal of the ACM, 22:463–468, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  91. R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. Proceedings of the Thirtieth Annual Symposium on the Foundations of Computer Science, IEEE, 1989.

    Google Scholar 

  92. D. Johnson, Approximation algorithms for combinatorial problems. J. Computer and Systems Sci, 9:256–278, 1974.

    Article  MATH  Google Scholar 

  93. V. Kann, Maximum bounded 3-dimensional matching is MAX SNPcomplete. Information Processing Letters, 37:27–35, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  94. H. Karloff and U. Zwick A 7/8-approximation for MAX 3SAT?, Proc. 38th Ann. IEEE Symp. on Foundations of Comput. Sci., IEEE Computer Society, 406–415. (1997)

    Google Scholar 

  95. N. Karmakar and R. Karp, An Efficient Approximation Scheme For The One-Dimensional Bin Packing Problem. Proceedings of the Twenty Third Annual Symposium on the Foundations of Computer Science, IEEE, 1982.

    Google Scholar 

  96. R. Karp, Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, Advances in Computing Research, pages 85–103. Plenum Press, 1972.

    Google Scholar 

  97. D. Karger, R. Motwani, and G. Ramkumar, On approximating the longest path in a graph. Algorithmica, 18(1):82–98, May 1997.

    MATH  MathSciNet  Google Scholar 

  98. M. Karpinski, A. Zelikovsky, Approximating Dense Cases of Covering Problems, Proc. DIMACS Workshop on Network Design: Connectivity and Facilities Location, Princeton, 1997, pp. 169–178. Available also as ECCC TR97-004

    Google Scholar 

  99. S. Khanna, N. Linial, and S. Safra, On the hardness of approximating the chromatic number. Proceedings of the Second Israel Symposium on Theory and Computing Systems, 1993.

    Google Scholar 

  100. S. Khanna, R. Motwani, M. Sudan, and U. Vazirani, On syntactic versus computational views of approximability. SIAM Journal on Computing, 28 (1998) 164–191. Preliminary Version: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 819–830. (with S. Khanna, M. Sudan, and U. Vazirani) Also available as: ECCC Report No. TR95-023, Electronic Colloquim on Computational Complexity, http://www.eccc.uni-trier.de/eccc/, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  101. S. Khanna, M. Sudan, and L. Trevisan, Constraint Satisfaction: The Approximability of Minimization Problems, In Proceedings of the 12th IEEE Conference on Computational Complexity. IEEE, pages 282–296, 1997.

    Google Scholar 

  102. P. Kolaitis and M. N. Thakur, Approximation properties of of NP minimization classes. Proc. Sixth Ann. Structure in Complexity Theory Conf., IEEE Computer Society, 353–366.

    Google Scholar 

  103. P. Kolaitis and M. Vardi, The decision problem for the probabilities of higher-order properties. Proceedings of the Nineteenth Annual Symposium on the Theory of Computing, ACM, 1987.

    Google Scholar 

  104. D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for NEXP-time. Journal of Computer and System Sciences, 54(2):215–220, April 1997.

    Article  MATH  MathSciNet  Google Scholar 

  105. L. Levin, Universal’ny \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) e pereborny \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) e zadachi (Universal search problems: in Russian). Problemy Peredachi Informatsii, 9(3):265–266, 1973. A corrected English translation appears in an appendix to Trakhtenbrot [135].

    Google Scholar 

  106. N. Linial and U. Vazirani, Graph products and chromatic numbers, Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 124–128, 1989

    Google Scholar 

  107. R. Lipton, New directions in testing. In J. Feigenbaum and M. Merritt, editors, Distributed Computing and Cryptography, volume 2 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 191–202. American Mathematical Society, 1991.

    Google Scholar 

  108. L Lovász On the ratio of optimal integral and fractional covers, Discrete Mathematics, 13, pages 383–390, 1975

    Article  MATH  MathSciNet  Google Scholar 

  109. C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic Methods for Interactive Proof Systems. J. ACM, 39, 859–868, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  110. C. Lund and M. Yannakakis, On the hardness of approximating minimization problems. Journal of the ACM, 41(5):960–981, September 1994.

    Article  MATH  MathSciNet  Google Scholar 

  111. C. Lund and M. Yannakakis, The approximation of maximum subgraph problems. Proceedings of ICALP 93, Lecture Notes in Computer Science Vol. 700, Springer Verlag, 1993.

    Google Scholar 

  112. D. Micciancio, The Shortest Vector Problem is NP-hard to Approximate within some Constant. 39th IEEE Symposium on Foundations of Computer Science (FOCS’98)

    Google Scholar 

  113. J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: Part II-A simple PTAS for geometric k-MST, TSP, and related problems. Preliminary manuscript, April 30, 1996. To appear in SIAM J. Computing

    Google Scholar 

  114. Monien, B., and Speckenmeyer, E. Ramsey numbers and an approximation algorithm for the vertex cover problem, Acta Inf. 22, 115–123, (1985).

    Article  MATH  MathSciNet  Google Scholar 

  115. R. Motwani, Lecture Notes on Approximation Algorithms. Technical Report, Dept. of Computer Science, Stanford University (1992).

    Google Scholar 

  116. P. Orponen and H. Manilla, On approximation preserving reductions: Complete problems and roboust measures, Technical Report C-1987-28, Department of Computer Science, University of Helsinki. (1987)

    Google Scholar 

  117. C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes. Journal of Computer and System Sciences 43:425–440, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  118. C. Papadimitriou and M. Yannakakis, The traveling salesman problem with distances one and two. Mathematics of Operations Research, 1992.

    Google Scholar 

  119. A. Paz and S. Moran, Non-deterministic polynomial optimization problems and their approximation, Theoretical Computer Science, 15:251–277, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  120. E. Petrank, The Hardness of Approximation: Gap Location. Computational Complexity, Vol. 4, pages 133–157, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  121. S. Phillips and S. Safra, PCP and tighter bounds for approximating MAXSNP. Manuscript, Stanford University, 1992.

    Google Scholar 

  122. A. Polishchuk and D. Spielman, Nearly Linear Sized Holographic Proofs. Proceedings of the Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994.

    Google Scholar 

  123. R. Raz, A parallel repetition theorem. Proceeding of the 27th STOC, 1995, pp. 447–456. Journal version in: SIAM journal of computing 27 (3) (1998) pp. 763–803

    Google Scholar 

  124. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. Proceedings of the Twenty Eighth Annual Symposium on the Theory of Computing, ACM, 1997. pages 475–484.

    Google Scholar 

  125. R. Rubinfeld, A Mathematical Theory of Self-Checking, Self-Testing and Self-Correcting Programs. Ph.D. thesis, U.C. Berkeley, 1990.

    Google Scholar 

  126. R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing 25(2):252–271, April 1996.

    Article  MATH  MathSciNet  Google Scholar 

  127. S. Sahni, Approximate algorithms for the 0/1 knapsack problem, Journal of the ACM, 22:115–124, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  128. S. Sahni and T. Gonzales, P-complete approximation problems. Journal of the ACM, 23:555–565, 1976.

    Article  MATH  Google Scholar 

  129. J. Schwartz, Probabilistic algorithms for verification of polynomial identities. Journal of the ACM, 27:701–717, 1980.

    Article  MATH  Google Scholar 

  130. M. Serna, L. Trevisan, and F. Xhafa. The parallel approximability of non-boolean constraint satisfaction and restricted integer linear programming. In Proceedings of the 15th Symposium on Theoretical Aspects of Computer Science, pages 488–498. LNCS 1373, Springer-Verlag, 1998.

    Google Scholar 

  131. A. Shamir, IP = PSPACE. Journal of the ACM, 39(4):869–877, October 1992.

    Article  MATH  MathSciNet  Google Scholar 

  132. Alex Samorodnitsky and Luca Trevisan, A PCP Characterization of NP with Optimal Amortized Query Complexity, Manuscript

    Google Scholar 

  133. M. Sudan, Efficient Checking of Polynomials and Proofs and the Hardness of Approximation Problems. Ph.D. Thesis, U.C. Berkeley, 1992. Also appears as ACM Distinguished Theses, Lecture Notes in Computer Science, no. 1001, Springer, 1996.

    Google Scholar 

  134. M. Sudan and L. Trevisan. Probabilistically checkable proofs with low amortized query complexity. In Proceedings of the 39th IEEE Symposium on Foundations of Computer Science, 1998.

    Google Scholar 

  135. M. Szegedy, Many Valued Logics and Holographic Proofs, ICALP 99

    Google Scholar 

  136. G. Tardos, Multi-prover encoding schemes and three prover proof systems. Proceedings of the Ninth Annual Conference on Structure in Complexity Theory, IEEE, 1994.

    Google Scholar 

  137. B. Trakhtenbrot, A survey of Russian approaches to Perebor (bruteforce search) algorithms. Annals of the History of Computing 6:384–400, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  138. Luca Trevisan, Reductions and (Non-)Approximability, PhD Thesis, Department of Computer Science, University of Rome ‘La Sapienza’, 1997,” http://www.cs.columbia.edu/luca/thesis

    Google Scholar 

  139. L. Trevisan. Approximating satisfiable satisfiability problems. In Proceedings of the 5th European Symposium on Algorithms, pages 472–485. LNCS 1284, Springer-Verlag, 1997.

    Google Scholar 

  140. L. Trevisan. Recycling queries in PCPs and in linearity tests. In Proceedings of the 30th ACM Symposium on Theory of Computing, 1998.

    Google Scholar 

  141. L. Trevisan, G.B. Sorkin, M. Sudan, D.P. Williamson. Gadgets, Approximation, and Linear Programming. In Proceedings of the 37th Symposium on Foundations of Computer Science. IEEE, pp. 617–626, 1996. Full version submitted to SIAM J. on Computing.

    Google Scholar 

  142. L. Welch and E. Berlekamp, Error correction of algebraic block codes. US Patent Number 4,633,470 (filed: 1986).

    Google Scholar 

  143. M. Yannakakis. On the approximation of maximum satisfiability. Journal of Algorithms, 17(3):475–502, November 1994.

    Article  MATH  MathSciNet  Google Scholar 

  144. D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM Journal on Computing, 25(6):1293–1304, December 1996

    Article  MATH  MathSciNet  Google Scholar 

  145. U. Zwick. Finding almost satisfying assignment. In Proceedings of the 30th ACM Symposium on Theory of Computing, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Szegedy, M. (2004). Probabilistic Verification and Non-Approximability. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-387-23830-1_3

Download citation

Publish with us

Policies and ethics