Skip to main content

Centrosome Amplification and the Origin of Chromosomal Instability in Breast Cancer

  • Chapter
Hormonal Carcinogenesis IV
  • 638 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boveri T (1914) Zur Frage der Entstehung Maligner Tumoren. Baltimore: Jena: Fischer Verlag (1929 English translation by M. Boveri reprinted as “The origin of malignant tumors”, The Williams and Wilkins Co.), 119.

    Google Scholar 

  2. Ewing J (1919) Neoplastic Diseases: a text-book on tumors. 1st ed. Philadelphia: W.B. Saunders Co, 1027.

    Google Scholar 

  3. Metcalf MM (1925) Boveri’s work on cancer. JAMA 84:1140.

    Google Scholar 

  4. Lingle WL, Lutz WH, Ingle JN, et al (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 95:2950–2955.

    Article  PubMed  CAS  Google Scholar 

  5. Lingle WL, Salisbury JL (1999) Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 155:1941–1951.

    PubMed  CAS  Google Scholar 

  6. Fukasawa K, Wiener F, Vande Woude GF, et al (1997) Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15:1295–1302.

    Article  PubMed  CAS  Google Scholar 

  7. Pihan GA, Purohit A, Wallace J, et al (1998) Centrosome defects and genetic instability in malignant tumors. Cancer Res 58:3974–3985.

    PubMed  CAS  Google Scholar 

  8. Zhou H, Kuang J, Zhong L, et al (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–193.

    Article  PubMed  CAS  Google Scholar 

  9. Mazia D (1987) The chromosome cycle and the centrosome cycle in the mitotic cycle. Int Rev Cytol 100:49–92.

    Article  PubMed  CAS  Google Scholar 

  10. Gustafson LM, Gleich LL, Fukasawa K, et al (2000) Centrosome hyperamplification in head and neek squamous cell carcinoma: a potential phenotypic marker of tumor aggressiveness. Laryngoscope 110:1798–1801.

    Article  PubMed  CAS  Google Scholar 

  11. Kuo KK, Sato N, Mizumoto K, et al (2000) Centrosome abnormalities in human carcinomas of the gallbladder and intrahepatic and extrahepatic bile ducts. Hepatology 31:59–64.

    Article  PubMed  CAS  Google Scholar 

  12. Pihan GA, Wallace J, Zhou Y, et al (2003) Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63:1398–1404.

    PubMed  CAS  Google Scholar 

  13. Sato N, Mizumoto K, Nakamura M, et al (2001) Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet Cytogenet 126:13–19.

    Article  PubMed  CAS  Google Scholar 

  14. Weber RG, Bridger JM, Benner A, et al (1998) Centrosome amplification as a possible mechanism for numerical chromosome aberrations in cerebral primitive neuroectodermal tumors with TP53 mutations. Cytogenet Cell Genet 83:266–269.

    Article  PubMed  CAS  Google Scholar 

  15. Meraldi P, Nigg EA (2002) The centrosome cycle. FEBS Lett 521:9–13.

    Article  PubMed  CAS  Google Scholar 

  16. Miyoshi Y, Iwao K, Egawa C et al (2001) Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer 92:370–373.

    Article  PubMed  CAS  Google Scholar 

  17. Salisbury JL, Lingle WL, White RA, et al (1999) Microtubule nucleating capacity of centrosomes in tissue sections. J Histochem Cytochem 47:1265–1274.

    PubMed  CAS  Google Scholar 

  18. Friedlander M (1982) Centrioles and centrospheres in giant cells of human gliomas. J Submicrosc Cytol 14:401–406.

    PubMed  CAS  Google Scholar 

  19. Kaneko H, Ishikawa S, Sumida T, et al (1980) Ultrastructural studies of a thymic carcinoid tumor. Acta Pathol Jpn 30:651–658.

    PubMed  CAS  Google Scholar 

  20. Seifert HW (1978) Electron microscopic investigation on cutaneous leiomyosarcoma. Arch Dermatol Res 263:159–169.

    Article  PubMed  CAS  Google Scholar 

  21. Sharp GA, Osborn M, Weber K (1981) Ultrastructure of multiple microtubule initiation sites in mouse neuroblastoma cells. J Cell Sci 47:1–24.

    PubMed  CAS  Google Scholar 

  22. Sharp GA, Weber K, Osborn M (1982) Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur J Cell Biol 29:97–103.

    PubMed  CAS  Google Scholar 

  23. Ring D, Hubble R, Kirschner M (1982) Mitosis in a cell with multiple centrioles. J Cell Biol 94:549–56.

    Article  PubMed  CAS  Google Scholar 

  24. Schatten H, Hueser CN, Chakrabarti A (2000) From fertilization to cancer: the role of centrosomes in the union and separation of genomic material. Microsc Res Tech 49:420–427.

    Article  PubMed  CAS  Google Scholar 

  25. Lengauer C, Kinzler K, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386:623–627.

    Article  PubMed  CAS  Google Scholar 

  26. Lingle WL, Barrett SL, Negron VC, et al (1978) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99:1978–1983.

    Article  CAS  Google Scholar 

  27. Mitelman F (1994) Chromosomes, genes, and cancer. CA Cancer J Clin 44:133–135.

    PubMed  CAS  Google Scholar 

  28. Ghadimi BM, Sackett DL, Difilippantonio MJ, et al (2000) Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes Cancer 27:183–190.

    Article  PubMed  CAS  Google Scholar 

  29. D’Assoro AB, Barrett SL, Folk C, et al (2002) Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res Treat 75:25–34.

    Article  PubMed  CAS  Google Scholar 

  30. Pihan GA, Purohit A, Wallace J, et al (2001) Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 61:2212–2219.

    PubMed  CAS  Google Scholar 

  31. Skyldberg B, Fujioka K, Hellstrom AC, et al (2001) Human papillomavirus infection, centrosome aberration, and genetic stability in cervical lesions. Mod Pathol 14:279–284.

    Article  PubMed  CAS  Google Scholar 

  32. Montagna C, Andrechek ER, Padilla-Nash H, et al (2002) Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu. Oncogene 21:890–898.

    Article  PubMed  CAS  Google Scholar 

  33. Gaillard S, Fahrbach KM, Parkati R, et al (2001) Overexpression of simian virus 40 small-T antigen blocks centrosome function and mitotic progression in human fibroblasts. J Virol 75:9799–9807.

    Article  PubMed  CAS  Google Scholar 

  34. Ouyang X, Wang X, Xu K, et al (2001) Effect of p53 on centrosome amplification in prostate cancer cells. Biochim Biophys Acta 1541:212–220.

    Article  PubMed  CAS  Google Scholar 

  35. Schatten H, Ripple M, Balczon R, et al (2000) Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells. J Cell Biochem 76:463–477.

    Article  PubMed  CAS  Google Scholar 

  36. Duesberg P (1999) Are centrosomes or aneuploidy the key to cancer? Science 284:2091–2092.

    Article  PubMed  CAS  Google Scholar 

  37. Duesberg P, Rasnick D (2000) Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton 47:81–107.

    Article  PubMed  CAS  Google Scholar 

  38. Duesberg P, Rausch C, Rasnick D, et al (1998) Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci USA 95:13692–13697.

    Article  PubMed  CAS  Google Scholar 

  39. Li R, Sonik A, Stindl, R, et al (2000) Aneuploidy vs. gene mutation hypothesis of cancer: Recent study claims mutation but is found to support aneuploidy. PNAS 97:3236–3241.

    Article  PubMed  CAS  Google Scholar 

  40. Duensing S, Duensing A, Crum CP, et al (2001) Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 61:2356–2360.

    PubMed  CAS  Google Scholar 

  41. Duensing S, Lee LY, Duensing A, et al (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 97:10002–10007.

    Article  PubMed  CAS  Google Scholar 

  42. Shono M, Sato N, Mizumoto K, et al (2001) Stepwise progression of centrosome defects associated with local tumor growth and metastatic process of human pancreatic carcinoma cells transplanted orthotopically into nude mice. Lab Invest 81:945–952.

    PubMed  CAS  Google Scholar 

  43. Pines J (1999) Four-dimensional control of the cell cycle. Nat Cell Biol 1:E73–79.

    Article  PubMed  CAS  Google Scholar 

  44. Bailly E, Bordes N, Bornens M, et al (1992) A high molecular weight centrosomal protein of mammalian cells is antigenically related to myosin II. Cell Motil Cytoskeleton 23:122–132.

    Article  PubMed  CAS  Google Scholar 

  45. Debec A, Montmory C (1992) Cyclin B is associated with centrosomes in Drosophila mitotic cells. Biol Cell 75:121–126.

    Article  PubMed  CAS  Google Scholar 

  46. Verde F, Dogterom M, Stelzer E, et al (1992) Control of microtubule dynamics and length by cyclin A-and cyclin B-dependent kinases in Xenopus egg extracts. J Cell Biol 118:1097–1098.

    Article  PubMed  CAS  Google Scholar 

  47. Verde F, Labbe JC, Doree M, et al (1990) Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 343:233–238.

    Article  PubMed  CAS  Google Scholar 

  48. Keezer SM, Gilbert DM (2002) Sensitivity of the origin decision point to specific inhibitors of cellular signaling and metabolism. Exp Cell Res 273:54–64.

    Article  PubMed  CAS  Google Scholar 

  49. Matsumoto Y, Hayashi K, Nishida E (1999) Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9:429–432.

    Article  PubMed  CAS  Google Scholar 

  50. Hinchcliffe EH, Li C, Thompson EA, et al (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283:851–854.

    Article  PubMed  CAS  Google Scholar 

  51. Lacey KR, Jackson PK, Stearns T (1999) Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 96:2817–2822.

    Article  PubMed  CAS  Google Scholar 

  52. Okuda M, Horn HF, Tarapore P, et al (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127–140.

    Article  PubMed  CAS  Google Scholar 

  53. Peter M, Nakagawa J, Doree M et al (1999) Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 60:791–801.

    Article  Google Scholar 

  54. Tokuyama Y, Horn HF, Kawamura K, et al (2001) Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276:21529–21537.

    Article  PubMed  CAS  Google Scholar 

  55. Meraldi P, Lukas J, Fry A, et al (1999) Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nature Cell Biol 1:88–93.

    Article  PubMed  CAS  Google Scholar 

  56. Fry AM, Mayor T, Nigg EA (2000) Regulating centrosomes by protein phosphorylation. In: Palazzo RE, Schatten GP (eds) Centrosomes in Cell Replication and Early Development, San Diego: Academic Press, 291–312.

    Google Scholar 

  57. Lutz W, Lingle WL, McCormick D (2001) Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 276:20774–20780.

    Article  PubMed  CAS  Google Scholar 

  58. Rao PN, Zhao JY, Ganju RK, et al (1989) Monoclonal antibody against the centrosome. J Cell Sci 93:63–69.

    PubMed  CAS  Google Scholar 

  59. Vandre DD, Borisy GG (1989) Anaphase onset and dephosphorylation of mitotic phosphoproteins occur concomitantly. J Cell Sci 94:245–258.

    PubMed  CAS  Google Scholar 

  60. Vandre DD, Feng Y, Ding M (2000) Cell cycle-dependent phosphorylation of centrosomes: Localization of phosphopeptide specific antibodies to the centrosome. Microscopy Res Tech 49:458–466.

    Article  CAS  Google Scholar 

  61. Katayama H, Zhou H, Li Q, et al (2001) Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J Biol Chem 276:46219–46224.

    Article  PubMed  CAS  Google Scholar 

  62. Goepfert TM, Adigun YE, Zhong L, et al (2002) Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res 62:4115–4122.

    PubMed  CAS  Google Scholar 

  63. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.

    PubMed  CAS  Google Scholar 

  64. Murray AW (1992) Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359:599–604.

    Article  PubMed  CAS  Google Scholar 

  65. Giannakakou P, Sackett DL, Ward Y, et al (2000) p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol 2:709–717.

    Article  PubMed  CAS  Google Scholar 

  66. Pockwinse SM, Krockmalnic G, Doxsey SJ, et al (1997) Cell cycle independent interaction of CDC2 with the centrosome, which is associated with the nuclear matrix-intermediate filament scaffold. Proc Natl Acad Sci USA 94:3022–3027.

    Article  PubMed  CAS  Google Scholar 

  67. Doxsey SJ (2001) Centrosomes as command centres for cellular control. Nat Cell Biol 3:E105–108.

    Article  PubMed  CAS  Google Scholar 

  68. Sluder G, Hinchcliffe EH (1998) The apparent linkage between centriole replication and the S phase of the cell cycle. Cell Biol Int 22:3–5.

    Article  PubMed  CAS  Google Scholar 

  69. Brown CR, Doxsey SJ, White E, et al (1994) Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J Cell Physiol 160:47–60.

    Article  PubMed  CAS  Google Scholar 

  70. Morris VB, Brammall J, Noble J, et al (2000) p53 localizes to the centrosomes and spindles of mitotic cells in the embryonic chick epiblast, human cell lines, and a human primary culture: An immunofluorescence study. Exp Cell Res 256:122–130.

    Article  PubMed  CAS  Google Scholar 

  71. Carroll PE, Okuda M, Horn HF, et al (1999) Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18:1935–1944.

    Article  PubMed  CAS  Google Scholar 

  72. Fukasawa K, Choi T, Kuriyama R, et al (1996) Abnormal centrosome amplification in the absence of p53. Science 271:1744–1747.

    PubMed  CAS  Google Scholar 

  73. Murphy KL, Rosen JM (2000) Mutant p53 and genomic instability in a transgenic mouse model of breast cancer. Oncogene 19:1045–1051.

    Article  PubMed  CAS  Google Scholar 

  74. Tarapore P, Fukasawa K (2000) p53 mutation and mitotic infidelity. Cancer Invest 18:148–155.

    PubMed  CAS  Google Scholar 

  75. Mussman JG, Horn HF, Carroll PE, et al (2000) Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19:1635–1646.

    Article  PubMed  CAS  Google Scholar 

  76. el-Deiry WS, Tokino T, Velculescu VE, et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.

    Article  PubMed  CAS  Google Scholar 

  77. Harper JW, Adami GR, Wei N, et al (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.

    Article  PubMed  CAS  Google Scholar 

  78. Mantel C, Braun SE, Reid S, et al (1999) p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93:1390–1398.

    PubMed  CAS  Google Scholar 

  79. Tarapore P, Fukasawa K (2002) Loss of p53 and centrosome hyperamplification. Oncogene 21:6234–6240.

    Article  PubMed  CAS  Google Scholar 

  80. Tarapore P, Horn HF, Tokuyama Y, et al (2001) Direct regulation of the centrosome duplication cycle by the p53–p21 Waf1/Cip1 pathway. Oncogene 20:3173–3184.

    Article  PubMed  CAS  Google Scholar 

  81. Kastan MB, Zhan Q, el-Deiry WS, et al (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxiatelangiectasia. Cell 71:587–597.

    Article  PubMed  CAS  Google Scholar 

  82. Wang XW, Zhan Q, Coursen JD, et al (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96:3706–3711.

    Article  PubMed  CAS  Google Scholar 

  83. Hollander MC, Sheikh MS, Bulavin DV et al (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23:176–184.

    Article  PubMed  CAS  Google Scholar 

  84. Donehower LA, Harvey M, Slagle BL, et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221.

    Article  PubMed  CAS  Google Scholar 

  85. Eshleman JR, Casey G, Kochera ME, et al (1998) Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene 17:719–725.

    Article  PubMed  CAS  Google Scholar 

  86. Duensing S, Munger K (2003) Centrosomes, genomic instability, and cervical carcinogenesis. Crit Rev Eukaryot Gene Expr 13:9–23.

    Article  PubMed  CAS  Google Scholar 

  87. Deng CX, Brodie SG (2000) Roles of BRCA1 and its interacting proteins. Bioessays 22:728–737.

    Article  PubMed  CAS  Google Scholar 

  88. Hsu LC, White RL (1998) BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci USA 95:12983–12988.

    Article  PubMed  CAS  Google Scholar 

  89. Maul GG, Jensen DE, Ishov AM, et al (1998) Nuclear redistribution of BRCA1 during viral infection. Cell Growth Differ 9:743–755.

    PubMed  CAS  Google Scholar 

  90. Okada S, Ouchi T (2003) Cell cycle differences in DNA damage-induced BRCA1 phosphorylation affect its subcellular localization. J Biol Chem 278:2015–2020.

    Article  PubMed  CAS  Google Scholar 

  91. Tutt A, Gabriel A, Bertwistle D, et al. (1999) Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 9:1107–1110.

    Article  PubMed  CAS  Google Scholar 

  92. Xu X, Wagner KU, Larson D, et al (1999) Conditional mutation of Brcal in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22:37–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Salisbury, J.L. (2005). Centrosome Amplification and the Origin of Chromosomal Instability in Breast Cancer. In: Li, J.J., Li, S.A., Llombart-Bosch, A. (eds) Hormonal Carcinogenesis IV. Springer, Boston, MA. https://doi.org/10.1007/0-387-23761-5_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-23761-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23783-1

  • Online ISBN: 978-0-387-23761-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics