Skip to main content

Metabolism of 17β-Estradiol in ACI Rat Liver and Mammary Gland After Chronic Estradiol Treatment

  • Chapter
Hormonal Carcinogenesis IV

Summary

A comparative study of the effects of chronic 17β-estradiol (E2) treatment on microsomal oxidation and conjugation of E2 via Phase I and II enzymes in the ACI rat mammary gland (MG) and liver was performed. NADPH-dependent oxidation of E2 was not detected in the MG, but was readily measured in the liver. Oxidation was not altered by chronic E2 treatment. Ascorbic acid stimulated E2 oxidation (non-enzymatically) in MG microsomes, but had no effect in the liver. Hepatic but not MG NADP(H):quinone oxidoreductase and glutathione S-transferase activities increased 4.0- and 2.0-fold, respectively, after 6 weeks (w) of treatment. MG catalase activity was decreased 64% after 28 w of E2 treatment, when the rats had developed 100% incidence of MG adenocarcinomas. Moreover, the activities of phenolsulfotransferase SULT1A1 and fatty acyl-CoA:E2-acyltransferase ACO:E2 decreased by 95 and 80%, respectively, in the MG but not in liver. Decreases in these enzymes were maximal after 6 w and preceded induction of MG tumors. Collectively, these data indicate that E2 regulates the expression of antioxidant and E2-metabolizing enzymes differentially in the ACI rat liver and MG. The decreased activities of SULT1A1 and ACO:E2 may favor accumulation of E2 available for receptor binding and conversion to catechol estrogens, both of which are implicated in E2-induced mammary oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stack D, Byun J, Gross ML, et al (1996) Molecular characteristics of catechol estrogen quinones in reactions with deoxyribonucleosides. Chem Res Toxicol 9:851–859.

    Article  PubMed  CAS  Google Scholar 

  2. Cavalieri EL, Stack DE, Devanesan PD, et al (1997) Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA 99:10937–10942.

    Article  Google Scholar 

  3. Cavalieri EL, Li K, Balu N, et al (2002) Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis 23:1071–1077.

    Article  PubMed  CAS  Google Scholar 

  4. Liehr JG and Ricci MJ (1996) 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci USA 93:3294–3296.

    Article  PubMed  CAS  Google Scholar 

  5. Castagnetta LA, Granata OM, Arcuri FP, et al (1992) Gas chromatography/mass spectrometry of catechol estrogens. Steroids 57:437–443.

    Article  PubMed  CAS  Google Scholar 

  6. Devanesan P, Santen RJ, Bocchinfuso WP, et al (2001) Catechol estrogen metabolites and conjugates in mammary tumors and hyperplastic tissue from estrogen receptor-alpha knock out (ERKO)/Wnt-1 mice: implications for initiation of mammary tumors. Carcinogenesis 22:1573–1576.

    Article  PubMed  CAS  Google Scholar 

  7. Abul-Hajj YJ (1982) Formation of estradiol 17 beta fatty acyl 17-esters in mammary tumors. Steroids 40:149–156.

    Article  PubMed  CAS  Google Scholar 

  8. Li JJ, Li SA (1987) Estrogen carcinogenesis in Syrian hamster tissue: role of metabolism. Fed Proc 46:1858–1863.

    PubMed  CAS  Google Scholar 

  9. Liehr JG, Fang WF, Sirbasku DA, et al (1986) Carcinogenicity of catecholestrogens in Syrian hamsters. J Steroid Biochem 24: 353–356.

    Article  PubMed  CAS  Google Scholar 

  10. Newbold RR and Liehr JG (2000) Induction of uterine adenocarcinoma in CD-1 mice by catechol estrogens. Cancer Res 60:235–237.

    PubMed  CAS  Google Scholar 

  11. Bui QD, Weisz J (1989) Monooxygenase mediating catecholestrogen formation by rat anterior pituitary is an estrogen-4-hydroxylase. Endocrinology 124:1085–1087.

    Article  PubMed  CAS  Google Scholar 

  12. Guad LR, Thomas RD, Green M. (2003) Diallyl sulfide inhibits diethylstilbestrol-induced lipid peroxidation in beast tissue of female ACI rats: implications in breast cancer prevention. Oncol Rep 10(3):739–43.

    Google Scholar 

  13. Shull JD, Spady TJ, Snyder MC, et al (1997) Ovary-intact, but not ovariectomized female ACI rats treated with 17β-estradiol rapidly develop mammary carcinoma. Carcinogenesis 18:1595–1601.

    Article  PubMed  CAS  Google Scholar 

  14. Cutts JH, Noble RL (1964) Estrone-induced mammary tumors in the rat: I. Induction and behavior of tumors. Cancer Res 24:1116–1123.

    PubMed  CAS  Google Scholar 

  15. Harvell DM, Strecker TM, Tochacek M, et al (2000) Rat strain-specific actions of 17β-estradiol in the mammary gland: correlation between estrogen-induced lobuloalveolar hyperplasia and susceptibility to estrogen-induced mammary cancers. Proc Natl Acad Sci USA 97:2779–2784.

    Article  PubMed  CAS  Google Scholar 

  16. Li SA, Weroba SJ, Tawfik O, et al (2002) Prevention of solely estrogen-induced mammary tumors by Tamoxifen: Evidence for estrogen receptor mediation. J Endocrinol 175:297–305.

    Article  PubMed  CAS  Google Scholar 

  17. Thomas PE, Reick LM, Ryan DE, et al (1983) Induction of two immunochemically related rat liver cytochrome P450 isozymes cytochromes P450c and P450d, by structurally diverse xenobiotics. J Biol Chem 258:4590–4598.

    PubMed  CAS  Google Scholar 

  18. Jaiswal AK, Mcbride OW, Adesnik M, et al (1988) Human dioxin-inducible cytosolic NADP(H):menadione oxidoreductase. cDNA sequence and localization of gene to chromosome. J Biol Chem 263:13572–13578

    PubMed  CAS  Google Scholar 

  19. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  20. Flohe L, Gunzler WA (1984) Assay of glutathione peroxidase. Meth Enzymol 105:114–121

    PubMed  CAS  Google Scholar 

  21. Aebi H (1984) Catalase in vitro. Methods Enzymol 105: 121–126

    Article  PubMed  CAS  Google Scholar 

  22. Foldes A and Meek JL (1973) Rat brain phenolsulfotransferase-partial purification and some properties. Biochem Biophys Acta 327:365–374.

    PubMed  CAS  Google Scholar 

  23. Mesia-Vela S, Sanchez RI, Li JJ, et al (2002) Catechol estrogen formation in liver microsomes from female ACI and SD rats: comparison of 2-and 4-hydroxylation revisited. Carcinogenesis 23:1369–1372.

    Article  PubMed  CAS  Google Scholar 

  24. Sanchez RI, Mesia-Vela S, Kauffman FC (2003) Induction of NAD(P)H quinone oxidoreductase and Glutathione S-transferase activities in livers of female August-Copenhagen Irish Rats treated chronically with estradiol: Comparison to the Sprague-Dawley Rat. J Steroid Biochem Mol Biol 87(2–3):199–206.

    Article  PubMed  CAS  Google Scholar 

  25. Xu S, Zhu BT and Conney AH (2001) Stimulatory effect of clofibrate and gemfibrozil administration on the formation of fatty acid esters of estradiol by rat liver microsomes. J. Pharmacol Exp Ther 296:188–197.

    PubMed  CAS  Google Scholar 

  26. Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19:1–27

    Article  PubMed  Google Scholar 

  27. Glatt H (2000) Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact 129:141–170.

    Article  PubMed  CAS  Google Scholar 

  28. Kester MH, Bulduk S, van Toor H, et al (2002) Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanisms for estrogenic activity of endocrine disruptors. J Clin Endocrinol Metab 87:1142–1150

    Article  PubMed  CAS  Google Scholar 

  29. Martyn P, Smith DL, Adams JB (1987) Selective turnover of the essential fatty acid ester components of estradiol-17β lipoidal derivatives formed by human mammary cancer cells in culture. J Steroid Biochem 28:393–398.

    Article  PubMed  CAS  Google Scholar 

  30. Adams JB, Vrahimis R, Young CE (1991). Metabolism of lipoidal derivatives of estradiol 17β in human mammary cancer tissue and cell lines. J Steroid Biochem Mol Biol 39:751–758

    Article  PubMed  CAS  Google Scholar 

  31. Rushmore TH, Pickett CB (1990) Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem 265:14648–14653.

    PubMed  CAS  Google Scholar 

  32. Ho YS and Howard AJ (1992) Cloning and characterization of the rat glutathione peroxidase gene. FEBS Lett 301:5–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Mesia-Vela, S., Sanchez, R.I., Reuhl, K.R., Conney, A.H., Kauffman, F.C. (2005). Metabolism of 17β-Estradiol in ACI Rat Liver and Mammary Gland After Chronic Estradiol Treatment. In: Li, J.J., Li, S.A., Llombart-Bosch, A. (eds) Hormonal Carcinogenesis IV. Springer, Boston, MA. https://doi.org/10.1007/0-387-23761-5_35

Download citation

  • DOI: https://doi.org/10.1007/0-387-23761-5_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23783-1

  • Online ISBN: 978-0-387-23761-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics